
Lessons learned from
Popeye and Roadrunner

Peter da Silva

Tcl 2019

October 14, 2019

Summary
Popeye is the real-time database for "recent" flights at Flightaware. It uses

sqlite for local data storage and exposes a simple TCP command-line API using
Tcl lists as the query format.

Over the past year we have brought popeye into production and updated it to
wring the last bit of performance we possibly can out of it. A new project for
tracking vehicles and planes on the surface, dubbed roadrunner, is being built
taking advantage of the lessons learned from popeye.

Overview of popeye (and roadrunner):
Popeye reads events from a data source called "controlstream", which

consists of lines organized in key-value format. Each event is used to update a
table containing the current status of a flight, a table of positions, and a table of
other flight events. It also accepts queries from webservers and other users of the
flight data, to provide flight status and flight track information.

_hc 1569888000 _hs 2 _c 1569887999 _s 15
type etms_update ident JBU1323 childID 166 clock 1569887991
combid 1569887999-1879 computed_eta 1569898401 dest KLAX edt
1569877912 eta 1569899460 facility etaprediction fdt
1569874740 id JBU1323-1569645945-airline-0150:0 msgType
etaprediction orig KJFK otherPedigrees {aireon wide} pedigree
wide predicted_on 1569898401 predicted_on_source ML-derived EON
recvd 1569887991 reg N985JT source gbt_etas status A

_hc 1569974399 _hs 3490 _c 1569974399 _s 3
type position ident YEL5 childID 209 _t trackInformation
airground A alt 40 alt_ft 4000 bitmask 770 clock
1569974393 combid 1569974399-1813 dest KMGM facility KZTL
flightlevel 40 fp YEL5-1569965569-3-0-209:0 gs 224
gufi KJ81088300 heading 289 historical 0 lat 32.21583
lon -86.37361 msgType TFMS orig KDAB otherPedigrees {aireon
wide} pedigree wide preferred 0 provenance wide
recvd 1569974397 reg N585PC simpleAltitude 40 updateType
Z

As can be seen from this example, the number of fields in each record can
vary wildly.

Roadrunner will provide the same service for aircraft and other vehicles on
the ground. The "surfacestream" data is much more regular and should be easier
to manage:

Bottlenecks
One unexpected bottleneck for Popeye is text copying. We expected

database updates to take a lot of time, but just generating the SQL commands to
populate the database and update the table of current flights had a significant
impact on performance.

Since the input is highly irregular, and we only wanted to modify the
columns actually present in each record, the alternatives were either execute
multiple update statements for each record or generate custom SQL for each row.
The former option turned out to be prohibitively slow even for SQLite, so we
opted for the latter. Doing it in Tcl involved a lot of list operations, and list/string
shimmering, which led to it spending most of its time copying text. Even in C++,
using string-views rather than strings, the biggest part of the input process was
creating SQL statements for updating the current tracks table. More text copying.

_c 1569887999 _s 667 airport KCLT alt 725 clock
1569888000 first_clock 1569888000 gs 0 heading 0
id KCLT-1569888000-asdex-4002 ident Unknown-4002 lat
35.218680 lon -80.940500 type track_start updateType
X

_c 1569887999 _s 668 airport KCLT alt 725 clock
1569888000 gs 0 heading 0 id KCLT-1569888000-
asdex-4002 ident Unknown-4002 lat 35.218680 lon
-80.940500 radius 100 scombid 1569887999-1275 track KCLT:4002
type ground_position updateType X

_c 1569887999 _s 669 aircrafttype A319 airport KCLT
alt 725 clock 1569888000 fix KCLT gs 15 heading
189 hexid A9942E id KCLT-1569887672-hexid-A9942E ident AAL1840
lat 35.218150 lon -80.949500 radius 100 reg N716UW
scombid 1569887999-1276 squawk 3172 track KCLT:900 type
ground_position updateType X

_c 1569887999 _s 670 airport KCLT alt 725 clock
1569888000 gs 13 heading 71 id KCLT-1569886558-
asdex-1714 ident Unknown-1714 lat 35.210330 lon
-80.935420 radius 100 scombid 1569887999-1277 track KCLT:1714
type ground_position updateType X

To avoid this string processing, we only generate each possible statement
once, create a prepared statement from it, and store it in an N-way tree of
TargetNodes.

 
struct TargetNode {
 TargetNode *children[T_NCOLUMNS] = {nullptr};
 sqlite3_stmt *statement[T_NCOLUMNS] = {nullptr};
};

This tree can be walked for subsequent records. A new statement is only
generated when it needs to extend the tree. This leads to a final set of about
800-1000 prepared statements that are generated out of the 2^60 possible
combinations of fields. This is a substantial savings.

Roadrunner reads a much more regular stream, but there are still over 100
unique combinations of fields that need to be handled, so it kept the same code as
Popeye to handle this problem.

On the other end, writing to the database has been the primary bottleneck.
Even SSD is not fast enough, so we have to keep the Popeye database in RAM
disk (tmpfs). Due to the size of the database and how rapidly it's changing
periodic snapshots quickly fall behind realtime. Instead, we have over a dozen
Popeye nodes and when a new one is spun up or one needs to be rebuilt we
temporarily shut down one of the existing nodes and copy the database files over.
So the production nodes (in two datacenters) serve as the persistent data for each
other.

The single-threaded nature of sqlite is another problem. Even using multiple
threads, sqlite only allows access through a connection to one thread at a time,
and using multiple connections you're still effectively limited to a single writing
thread at a time because the database is locked as a whole. However, we have a
workaround.

Roadrunner uses multiple stream readers, each of which handling a subset of
the threads. Each reader writes to a shard database that is mounted on the main
database using an "attach" sqlite command.

ATTACH DATABASE rrdb_$shard.sqlite AS shard$shard;

Popeye will be going through the same evolution once we have experience
with it in Roadrunner. For roadrunner, since each track is entirely within the
bounds of one airport, we shard the database on a hash of the airport, using a
simple hash that can be reliably implemented in both C++ and Tcl called the
Fowler/Noll/Vo hash : 1

 variable FNV_32_PRIME [expr 0x01000193]
 variable FNV_32_START [expr 0x811c9dc5]
 proc bucket {val size} {
 variable FNV_32_PRIME
 variable FNV_32_START

 set result $FNV_32_START

 foreach c [split $val ""] {
 scan $c "%c" n
 set result [expr {(($result * $FNV_32_PRIME) & 0xFFFFFFFF)
^ $n}]
 }

 return [expr {$result % $size}]
 }

Or in C++:

#define FNV_32_PRIME ((uint32_t) 0x01000193)
#define FNV_32_START ((uint32_t) 0x811c9dc5)
uint32_t DB::bucket(std::string_view val, int size)
{
 uint32_t result = FNV_32_START;

 for(auto it = val.cbegin(); it != val.cend(); ++it) {
 result = (result * FNV_32_PRIME) ^ *it;
 }

 return result % size;
}

Each reader process only attaches the shard it's writing to, and the worker
processes that handle user commands, and the background processes that purge
old tracks and save completed tracks to a long term PostgreSQL store mount all
the shards.

Originally the plan was to completely hide the sharded database structure by
using a series of temporary views to emulate flat tables for tracks and events.
Unfortunately I have not been able to make the views efficient enough. Accessing
the database through a UNION ALL view is at best about three times slower for
the typical query, compared to a flat table. Running multiple queries on the table

 https://en.wikipedia.org/wiki/Fowler-Noll-Vo_hash_function1

shards in Tcl and merging the results in the Tcl code is actually a little faster than
the original flat tables.

If the shard can be determined by examining the keys (for example, the
webserver is pulling up all tracks in a single airport) then only one shard of the
table needs to even be examined.

Housekeeping
Cleaning old tracks from the database and archiving completed tracks to

PostgreSQL was a bottleneck in the single-threaded popeye, even using tables in a
mounted :memory: database to hold intermediate results. At times this process
stalled the main thread for 8 or 9 seconds during the housekeeping pass. For
Roadrunner, these processes are handled by separate processes that have read-
only access to the database, and which send lists of flights to purge or mark as
archived to the readers over a socket. Since it's using Tcl fileevents to track
surfacestream it can handle requests from other components of Roadrunner
the same way. Actually purging tracks that have been (because they've already
been archived and are over a day old) now happens in a separate process and
finally deleting them typically takes well under 500ms, and even if it takes a few
seconds in the housekeeping process that's not a bottleneck.

This means that even without splitting the readers, using separate threads for
housekeeping is itself a performance advantage.

Other issues
Popeye is emulating Birdseye which was emulating Trackstream, which

used a completely custom set of data structures. The result is that the query
formats are a little quirky in places... some search commands use "-field
value" or "-range value1 value2", others use a list of {operator
field value} tuples. Similarly, the results in some cases are a simple Tcl list
where the caller is expected to know the meaning of each element, others are lists
of key-value pairs.

Roadrunner commands will all use the same parser, which will hopefully
permit more code re-use in the SQL code generator, and the results will all be
key-value lists. For more complex queries, or ones where the web developer is
still working on their design, Roadrunner will accept raw SQL, such as:
"select * from target where ident = 'UAL4';". This is not
intended for long term use since it exposes internal details of the database
structure and we need to do ad-hoc rewrites of queries to hide the sharding from
customers.

	Peter da Silva
	Tcl 2019
	October 14, 2019
	Summary
	Overview of popeye (and roadrunner):
	Bottlenecks
	Housekeeping
	Other issues

