
Auto-Updating for Client-Server Software

Yili Zhang, Stephen Huntley, Urmita Banerjee, Dae-young Kim, Clif Flynt, and Gunes Koru
Health IT Lab, Department of Information Systems

University of Maryland, Baltimore County
Baltimore, MD

yili.zhang@umbc.edu

I. INTRODUCTION

A toolkit developed by Health IT Lab in Tcl/Tk
[1]–[3] is a client-server software [4] for data quality
[5] improvement for healthcare organizations. A
global database is built on a server maintained by
a system admin of the organization, considering
data in this type of organizations is confidential
and should be kept within the organization. Users
will do create, read, update, and delete (CRUD)
operations to the global database by remote com-
munication package ::comm::comm [6]. To reduce
verbose process of updating a software on client-
end and minimize the workload of system admin on
server-end, the software requires an auto-updating
mechanism to check and update the software auto-
matically without effecting transport between client
and server. However, the toolkit as a single Starkit
[7] or Starpack [8] is not able to update itself and re-
launch itself after updates. Instead, the running pro-
cess will be intervened and the kit will be corrupted.
In this case, a driver program was developed for
auto-updating, which will launch main program as
a child process, check update for it periodically, and
update the if there is there is any updates detected.
The updating function was achieved by leverag-
ing update function in Starkit Developer eXtension
(SDX) kit [9] and modifying details and fixing
bugs to make it adapt to update features on both
Linux and Windows system. This mechanism make
the toolkit updates automatically fast and efficiently
without affecting users’ operation.

II. METHODS

A. Update Function in SDX Kit

The sync feature in SDX kit is for starkit synchro-
nization through channel, which is utilized in this
study for starkit comparison and synchronization.
Update command is called in our program to serve
the purpose with ”-n” option to check if there is a
new version of kit on the target URL, or without
”-n” option to sync the kit from the target URL.
Listing 1 is the description of update function in
help of SDX kit.

If update function is executed with ”-n” option,
it will return ”Up to date” if there is no difference
between two kits and ”number of difference(s)” if
there is any difference between two kits and indi-
cates the number of difference. If update function is
executed without ”-n” option, it will replace the kit
with the kit on target URL. Since the function only
applies to Linux platform, it is modified to also be
adapted to Windows platform. Some commands will
be changed accordingly if the platform is detected
as Windows, such as the ”file mtime” command
will cause error on Windows, they are modified to
”file exists” instead if the platform is detected as
Windows.

B. Driver Program

Then a driver program was developed including
self-invoked functions for auto-updating and com-
piled as a Starpack. Main functionality program will
be compiled as a Starkit, which will be upgraded
and updated by driver program. The driver program
will launch the Starkit as a child process, start to
check for updates periodically, and update the kit if
there is any new version detected.

Listing 1. Listing help of help function

u p d a t e F e t c h o r u p d a t e a s t a r k i t from a S t a r s y n c s e r v e r (v i a h t t p)

Usage : u p d a t e ?−from u r l ? ?−n ? s t a r k i t

−from u r l Use s p e c i f i e d S t a r s y n c s e r v e r i n s t e a d o f d e f a u l t .
−n Show d i f f e r e n c e s , b u t do n o t make any changes .

F e t c h changes so l o c a l s t a r k i t matches t h e one on t h e s e r v e r .
The S t a r s y n c mechanism on ly t r a n s f e r s f i l e s which have changed .

Warning : t h i s adds , m o d i f i e s , * and * d e l e t e s f i l e s i n t h e s t a r k i t .

There are six main functions in driver program:
• Server update: check and update in server mode
• Client update: check and update in client mode
• Update time configuration: read and write time

for update period
• Process termination: terminate the main pro-

gram before upgrading
• Progress bar: shows progress bar for when

upgrading
• Server restart: restart server if server is down
1) Updates for server-end: The driver program

for server will ping a URL, check if there is any
difference of the kit on local and the kit on the target
URL. If there is any difference detected, the driver
program will wait till there is no transport between
client and server, end server program, and update
the toolkit on server-end. During updating toolkit
on server, client will lose connection, operations of
users on client-end will be terminated and they will
enter a ”server maintain mode”. After the toolkit on
server-end is synchronized, the driver program will
re-launch the toolkit program in server mode. Then
client can connect to server again and keep pro-
cessing. The server program is running as a service,
which will alleviate the workload for system admin.
The updates for server will happen automatically
and need no extra action, it will keep server running
and updating on time unless the computer is shut
down.

2) Updates for client-end: Since we do not want
the client to hold an advanced version of software
than server, the client need to check the version of

kit with the kit on server. In this case, there is no
need to check the kit on client-end with the URL,
because if there is any updates detected, the driver
program still need to check kit version with the kit
on server before upgrade. Thus, the driver program
for client only ping server periodically to check the
version number of kit. Version information of the
toolkit is stored in a Sqlite3 database [10], [11],
wrapped with the kit. When server is launched, the
kit will be mounted and the version number will
be read into a variable on server. When client is
launched, version number in the kit on client-end
will also be read into a variable. Client program will
read the version variable on server and compare it
with the version variable on client-end. If version
of client is outdated, user will be asked to update
immediately, suspend running client program, and
upgrade the kit with URL. This mechanism prevents
client update earlier than server, which may cause
inconsistency and corrupt the program and transport.
In this case, user will be notified for updates right
after server is updated if the time to check for
updates is short.

3) Configuration of Update Time: Considering
from security and load of CPU, pinging an URL
too frequently can be a issue for some organizations
such as Federal government and State agencies, the
driver program enables user to configure the time
period to check for updates. The configuration is
only for server because the driver program for server
will ping the target URL periodically while the
driver program for client only ping it when there

is a outdated version detected. System admin who
maintains server will modify the time in a text file,
which will be read by driver program as the interval
time between to checks of update. The default time
will be set as one second and range for configuration
is 0.1 second to 24 hours. In some organizations,
pinging a remote server regularly will be detected as
a violation operation. In this case, the interval time
will be biased by twenty percent of the configured
time randomly. That is, the real time between two
checks will be a random number between 0.8 times
to 1.2 times of configured time. This method evaded
unnecessary restricts effectively.

4) Termination of Toolkit: The function to ter-
minate the toolkit is calling Windows or Linux
commands to kill a process. The function will be
called after a need for updates detected and before
the updates happen.

5) Progress Bar: When a upgrading is happen-
ing, a progress bar will show on the screen to notify
user the progress of upgrading. The function will be
called after the update stars, and the progress bar
will move forward after one action is done.

6) Restart of Server: As server is running as a
service, it will be hard to get noticed if server is
down because of unexpected error on time. Thus, a
function was developed as a self-invoked function
to check if server is wake or not periodically. The
function will restart server if server is detected as
slept. By executing this function, the server can keep
alive.

Figure 1 shows the process of how does driver
facilitate the auto-updates.

C. Termination of Driver Program

Although the toolkit is executed as a child pro-
cess of driver program, the execution of driver
program and toolkit should start and end at the same
time. Therefore, ending driver program will end the
toolkit, for both server mode and client mode. As
a running service, the driver program of server will
be terminated by ending the service manually, and
server program will be ended at the same time.
However, on client end, user only operates on the
toolkit which is also the child process and may even
not realize about the driver program. Thus, driver
program will be terminated when user exit from the
toolkit. The process ID of driver program will be

Launch
server

Check
updates

Needs
Update?

Check
communication

Has
Comm?

Terminate
server

Update kit

Relaunch
server

Launch
client

Check kit
version

Version
matches?

Ask user
to update

Click
yes?

Suspend
client

Update kit

Relaunch
client

Remote
Server

Yes

No

No

Yes

Yes

No

No

Yes

Server Client

Fig. 1. Process of Auto-Updates for Client-Server Program

passed as an argument to child process, exiting the
child process will also kill the driver program by its
process ID. In this way, user will exit from toolkit
and end driver program at the same time.

D. Wrapping the Software

Same with the driver program – compiling the
driver for client mode and server mode in one
Starpack – toolkit for both client and server is
compiled in one Starkit. A server option will be
given by user when executing the Starpack to start
update checking in server mode, and start to run
the program Starkit as a server. Otherwise, if there
is no option given, the driver program will check for
updates in client mode and launch program kit as
a client. In this case, driver program looks updates
for the same Starkit for both client and server.

III. OPTIMIZATION AND IMPLEMENTATION

At the beginning of development, there is no
time interval set for update checking, CPU will be
overloaded because of driver is pinging ceaselessly,
which slow down the performance of main program.
Then we increased the default time interval for
checking to every one second, which can both im-
prove the performance of main program and update
program in a timely manner.

Executing the server is simply by command line
or starting the service. The command includes the
target URL for update and ”–server” option to
indicate the software should run in server mode.
If server is installed as a service, the option and
target URL is already hard coded when software is
installed. Executing client is by double clicking on
the software icon with the default URL or command
line with target URL.

IV. DISCUSSION AND CONCLUSION

The auto-update mechanism enabled user to
check for updates automatically, especially on the
server-end, no intervene from user is required to
finish updating. What’s more, this mechanism en-
sured client updates after server, which prevent the
case that the version of client program is advanced
than server program. At the end, the mechanism
guaranteed both of performance and timely updates,
it can also be applied to other client-server software
other than the toolkit we developed.

REFERENCES

[1] Flynt C. Tcl/Tk: A Developer’s Guide. Elsevier; 2012.
[2] Welch BB, Jones K, Hobbs J. Practical programming in Tcl

and Tk. vol. 1. Prentice Hall Professional; 2003.
[3] Ousterhout JK, Jones K. Tcl and the Tk toolkit. Pearson

Education; 2009.
[4] Wikipedia. Client-Server Model Wikipedia;. (Accessed on

09/24/2018). ”http://www.webcitation.org/72gG00LNf”.
[5] Strong DM, Lee YW, Wang RY. Data quality in context.

Communications of the ACM. 1997;40(5):103–110.
[6] Corporation A. Remote communication package;. (Accessed

on 09/24/2018). http://www.webcitation.org/72gGJSvXM.
[7] SEH. Tcl Starkit;. (Accessed on 09/24/2018).

http://www.webcitation.org/72gGSKD3c.
[8] Pooryorick. Tcl Starpack;. (Accessed on 09/24/2018).

http://www.webcitation.org/72gGWmetg.
[9] Pooryorick. Tcl SDX kit;. (Accessed on 09/24/2018).

https://wiki.tcl.tk/3411.
[10] Newman C. SQLite (Developer’s Library). Sams; 2004.
[11] Owens M, Allen G. SQLite. Springer; 2010.

