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Short review of TCP server programming
1. socket() // Creates a socket
2. bind() // Assign address
3. listen() // Join the network
4. accept() // Establish connection



Where to create worker processes? 
Classic: 

socket() bind() listen() accept() fork() 
Pre-Fork: 

socket() bind() listen() fork() accept() 
SO_REUSEPORT: 

exec()/fork() socket() bind() listen() accept()



Footnote 

SO_REUSEPORT is in TCL TIP 465



OS HAS CONTROL WITH MULTIPLE
LISTEN FDS

Multiple accepts are scheduled by OS 

SO_REUSEPORT is hashed to processes by
address. 

Low number IP addresses low scalability on Linux 
For a good implementation see Cloudflare's blogs



How to get classic single accept with multiple
workers? 

Exclusive locks and coordination - Apache 
Proxy/Broker TCP in userspace 

SCM_RIGHTS Apache mod and socketservertcl



What is SCM_RIGHTS?  

Part of the Unix socket specification.  

SCM_RIGHTS is a control message which can be
sent over SOL_SOCKET.  

Provides the ability to pass file descriptors.



SOCKETSERVERTCL
TCL extension which provides a means to send

and receive SCM_RIGHTS messages.  

This makes is possible to pass TCL sockets.  

Programming model follows TCL's core socket
command.



package require socketserver 

::socketserver::socket server 9901 

proc handle_readable ... 

proc handle_accept {fd ipaddr port} { 
 fileevent $fd readable [list handle_readable $fd] 
} 

proc make_worker {} { 
  set pid [fork] 
  if {$pid == 0} { 
 # This is the child 
 ::socketserver::socket client handle_accept 
 vwait done 
  } 
} 

make_worker 

vwait done 



proc handle_accept {fd} { 
 fconfigure $fd -encoding utf-8 -buffering line -blocking 1 -
 while {1} { 
     set line [gets $fd] 
     if {[string first "quit" $line] != -1} { 
      break 
     } 
     puts $fd "[pid] $line" 
 } 
 puts "client closing socket" 
 close $fd 
 # Now that we have closed, we are ready for another socket 
 ::socketserver::socket client -port 8888 handle_accept 
} 
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