
SOCKETSERVERTCL

Shannon.Noe at flightaware dot com

SOCKETSERVERTCL

Short review of TCP server programming
1. socket() // Creates a socket
2. bind() // Assign address
3. listen() // Join the network
4. accept() // Establish connection

Where to create worker processes?
Classic:

socket() bind() listen() accept() fork()
Pre-Fork:

socket() bind() listen() fork() accept()
SO_REUSEPORT:

exec()/fork() socket() bind() listen() accept()

Footnote

SO_REUSEPORT is in TCL TIP 465

OS HAS CONTROL WITH MULTIPLE
LISTEN FDS

Multiple accepts are scheduled by OS

SO_REUSEPORT is hashed to processes by
address.

Low number IP addresses low scalability on Linux
For a good implementation see Cloudflare's blogs

How to get classic single accept with multiple
workers?

Exclusive locks and coordination - Apache
Proxy/Broker TCP in userspace

SCM_RIGHTS Apache mod and socketservertcl

What is SCM_RIGHTS?

Part of the Unix socket specification.

SCM_RIGHTS is a control message which can be
sent over SOL_SOCKET.

Provides the ability to pass file descriptors.

SOCKETSERVERTCL
TCL extension which provides a means to send

and receive SCM_RIGHTS messages.

This makes is possible to pass TCL sockets.

Programming model follows TCL's core socket
command.

package require socketserver

::socketserver::socket server 9901

proc handle_readable ...

proc handle_accept {fd ipaddr port} {
 fileevent $fd readable [list handle_readable $fd]
}

proc make_worker {} {
 set pid [fork]
 if {$pid == 0} {
 # This is the child
 ::socketserver::socket client handle_accept
 vwait done
 }
}

make_worker

vwait done

proc handle_accept {fd} {
 fconfigure $fd -encoding utf-8 -buffering line -blocking 1 -
 while {1} {
 set line [gets $fd]
 if {[string first "quit" $line] != -1} {
 break
 }
 puts $fd "[pid] $line"
 }
 puts "client closing socket"
 close $fd
 # Now that we have closed, we are ready for another socket
 ::socketserver::socket client -port 8888 handle_accept
}

client

client

OS

OS

socketservertcl
server

socketservertcl
server

FIFO

FIFO

socketservertcl
client

socketservertcl
client

application

application

fork() new client process

register
socketservertcl
callback

TCP Open

accept()
get new FD

TCP session established

sendmsg(FD,SCM_RIGHTS)

TCL FD Event

recvmsg(FD,SCM_RIGHTS)

handle_listen(
sock,ip,port)

"HELO"

"OK"

close()
re-register
callback proc

