
Introduction to the HAMT and Tcl

Don Porter
NIST

donald.porter@nist.gov

September 26, 2017

Abstract

The structure and function of the Hash Array-Mapped Trie (HAMT) is
presented from the perspective of those familiar with analogous hash ta-
ble data structures in the implementation of Tcl. The immutable nature
of values represented by the HAMT structure is a perfect match to the
value semantics of the Tcl language. A prototype implementation of the
HAMT within a branch of the Tcl codebase permits comparisons with the
incumbent dictionary values. Catastrophic performance collapse in scripts
due to issues of value sharing disappear, as the design prevents their exis-
tence. Even in a prototype with little effort toward explicitly tackling per-
formance, the speed of basic HAMT operations are within a factor of 2 of
the corresponding dict operations. Opportunities for further improvement
abound. Related data structures such as Relaxed Radix Balance (RRB) Trees
may have similar application to Tcl lists and strings following the example
of their use as the basis of immutable vectors in Clojure. Success promises
to deliver greatly improved multi-threading results, as concurrent sharing
of explicitly immutable values is an inherently simpler problem. Memory
usage and extension interfaces may also see substantial improvements.

1 Value Semantics in Tcl

Tcl programmers recognize the mantra that “Everything is a String”. It brings
to mind the concrete nature of the Tcl 7 implementation where every value is
indeed implemented as a dynamically allocated, NULL-terminated char array.

The days of Tcl 7 are long in the past. We now regularly enjoy strained,
prolonged discussions as people try to invent a new modified mantra that says
what is important about the nature of Tcl values, but doesn’t give false impres-
sions suggesting the continued use of a clearly non-performing implementa-
tion. The interchangability of any Tcl value with a string value remains true.
The ability to make string-like queries of any value is still presumed. How long
is this value? What is it’s nth character? The utility of the string as a medium
of value exchange remains important.

That said, much of the utility of the nature of Tcl’s values lies in the simpler
truth that Tcl follows value semantics. A value is a value. Two values that
are the same in every way behave the same in every way. There is no place
for the identity or the container of a value to revise its interactions. This is in
contrast to languages where reference semantics play an essential role. In such
languages, programming becomes not so much an exercise of data processing
applied to fully known values, but a matter of directing entities to take actions
or transform themselves. The distinction is between dead values and living
objects. You can count on a dead value remaining unchanged. This inherently
limits the kind of troubles they can cause. This is a considerable part of what
makes programming in Tcl a more manageable task than programming in some
other languages. There’s simply less available trouble to get into. To be fair,
there is some loss of conventional programming techniques that are built on
reference semantics.

The value semantics in Tcl is one of the key things it shares with Lisp. It
gives much of Tcl a near-functional character. Recent years have shown pockets
of renewed enthusiasm for the value semantics approach in many developer
circles. Several ”new” languages (newer than Tcl) have explicitly embraced
value semantics, implicitly endorsing some of Tcl’s model of operation. Exam-
ples include Scala and Clojure. For the most part their development heritage
is rooted in Lisp instead of Tcl, but that just indicates we have shared taste in
what foundations are more attractive.

There is a key difference in the value semantics delivered by Tcl and those
delivered by Clojure for example. In Clojure, immutable values are provided
by implementations where their immutable nature is directly structured in the
implementation. In contrast, Tcl’s implementation is written in C, and most of
the underlying C code is the use and management of C primitives that do not
themselves guarantee value semantics. Consider the Tcl string implemented as
a NULL-terminated char array. The elements of the char array can be written
as well as they can be read. Overwriting a byte in a string changes the value
of the string. The Tcl implementation is not inherently protected against such
failure to deliver value semantics to the script level. Instead, the value seman-
tics are properly implemented only via careful attention to the programming
discipline of Copy on Write. Any scheme that relies on perfect application of
discipline is at risk of failure. The Tcl world does fail from time to time as the
very existence of the phrase ”EIAS violation” makes clear.

Note that sustaining the ”Copy on Write” discipline is the key reason Tcl
values must be handled with precisely correct management of reference counts.
An implementation that can inherently deliver immutable value without a vis-
ible Copy on Write burden makes escape from the reference counting a plau-
sible future. Further note that Tcl’s current inability to directly share values
between threads is mostly rooted in the use of a reference counting scheme
that is not thread safe. Escaping that implementation may well hold the key to
letting any number of threads share read accesss to an immutable value they
all share an interest in. As the multicore model of hardware systems has fully
taken over the world, this has increasing importance to the ability to produce

software that efficiently makes full use of available hardware capability.
Developments in computer science starting in the late 1990s have produced

data structures designed to directly provide immutable values of various kinds,
while achieving reasonable levels of both time and memory efficiency. Clojure
is built on such structures, like the Hash Array-Mapped Trie and the Relaxed
Radix Balance Tree. Here we begin to explore the prospects for re-implementing
portions of Tcl on data structures that directly support Tcl’s value semantics.
This may increase the complexity of the inner core of Tcl’s implementation, but
it may have the effect of making the interfaces available to extensions easier
and safer to use.

2 From Hash Table to HAMT

In this manuscript, we consider the Hash Array-Mapped Trie, an immutable
data structure that provides the same function as Tcl’s long established hash
tables. The core concept of the hash table is to store and retrieve key, value
pairs, and allow a particular key to be found quickly. A hash value computed
from the key determines where it is to be found. Given a Hash function,

s i z e t Hash (Key key)

that produces a pointer-sized value for each key in the Key domain, the simple
strategy is to use that hash to select one “bucket” from among all buckets to
look in for the desired key.

Search bucket [Hash (key)] f o r key .

A quality Hash function is one that distributes the domain of Keys evenly over
the range of hash values. The consequence is that each bucket search should
be through only a small number of entries. All the entries that land in the same
bucket are stored in a linked list that must be scanned one entry at a time. A
Hash function should also not be time-consuming beyond necessity.

A literal interpretation of this scheme runs into immediate practical diffi-
culty. On the usual 64-bit systems of today, the domain of hash values has
size 264. This implies a bucket array of that size, imposing a memory require-
ment of 128 exibytes, almost all of which exists just to hold NULL pointers.
Some revision to the concept is needed to make a practical implementation.
The clear appropriate choice for hash value size today is size t, as that is the
size the hardware is capable of computing without additional cost. Tcl hash
tables are instead based on a hash value of type unsigned int. That implies a
much smaller requirement of only 32 gigibytes, but that’s still impractical (and
beyond the capability of Tcl’s incumbent memory allocators).

For Tcl’s hash tables, the practical implementation takes the form of

Search bucket [Hash (key) & mask] f o r key .

where the mask limits the number of bits in the hash that determine the bucket
chosen for searching. Tcl hash tables are born using a mask of only two bits.

This implies four buckets, an easily manageable size. As more entries are
added to the table, the buckets fill and grow entry lists extending from each.
The Tcl hash tables are tuned to continue in this way until the total number
of entries exceeds three times the number of buckets. At that point a typi-
cal bucket search starts to exceed three entries in length, and the judgment
recorded in the design is that is too long. A new hash table is created with a
mask with two more bits, or four times as many buckets. All entries in the orig-
inal table have to be re-inserted into the new table, requiring an infrequent but
substantial penalty. Either all keys must be hashed again, or the hash values
need to have been stored within the entries. The price is paid in either time
or memory. Note also that at a typical moment of hash table operations, each
bucket can be expected to hold one or two entries, not the zero or one expected
in the original hash concept. Tcl hash tables are implemented to never shrink,
so once any table is large in size, it will continue to make use of that enlarged
memory space, even if the number of keys stored in it drops to zero. Finally, if
memory limitations have not yet already arisen, when the 805, 306, 368th key is
added to a Tcl dict, the hash table within that dict will crash out of an inability
to scale up the bucket array again. (See Tcl Bug 3298012.) Even with some of
these shortcomings, though, the Tcl hash table has served well for a lifetime;,
its function powers a large number of tasks underlying the Tcl implementation.

The HAMT is the result of a different series of steps of re-deisgn away
from the impractical giant bucket array of the original hash map conception.
It achieves a different set of features along the way. Its fundamental purpose
of being an efficient store of key, value pairs making up a dictionary remains
effective.

The first step away from the giant bucket array is in the direction of even
greater impracticality. Instead of imagining each bucket as an element in an
array of 264 elements, imagine each bucket as the leaf of a binary tree. To reach
any particular bucket, we use the bits of a hash value, one by one, to navigate
the tree from root to the bucket leaf determined by the entire hash value. This
requires 64 steps from a root node all the way to the appropriate bucket. This
is even more inefficient taken literally, but it gives us an important conception
of the structure that we can further modify. This is an example of a Trie, a tree
structure with all content stored at the leaves, with a leaf selected by following
a path directed by an index value. Here that index value is the hash value of
the key, so this structure is known as a Hash Trie.

Like the giant bucket array, the Hash Trie uses vast amounts of space for
buckets to do nothing more than store NULL pointers indicating the absence
of any key matching the hash of that bucket. Recall that there are 264 buckets
in this conception. For any imaginable amount of data to store, almost every
bucket will be empty. The number of buckets is exponentially larger than any
practical storage use. Even stuffing a billion keys into a Hash Trie will make
use of about one in a billion of the conceptual buckets.

This observation leads to the first step toward making a practical imple-
mentation. We can simply determine not to store any leaf that holds a NULL
bucket. Furthermore, we can determine not to store any internal node that has

no leaves. Every stored key still rests in a bucket, and that bucket is reached
following a path of 64 steps from the root, but the massive waste of allocat-
ing space to store nothing is eliminated. Since each bucket is still reached by a
64 step path, it is implicitly identified with a particular 64-bit hash value that
determines that path.

At this point, in most examples of valid states of the Hash Trie, there will
be long chains of internal nodes representing the paths from root to a bucket
leaf containing one or more keys. Some nodes will have two children, and
represent an actual decision point in the path taking, but many will not. There
is no need to store multiple steps of a path that has only one destination, so
long as we can identify that destination. The next step, then, is to store in each
bucket the hash value associated with it. At that point we no longer need the
complete trail of breadcrumbs to tell us where we arrive, and to check whether
that bucket of arrival is a match to the hash value we are trying to look up. This
removes another large amount of unnecessary storage from the structure, by
pulling all leaves up the tree to the point where they least differ from another
leaf in the tree. Nodes exist to distinguish buckets actually stored in the tree,
not buckets that could potentially be in the tree.

The next revision is to make a similar reform to paths reaching internal
nodes. So long as each internal node has stored within it its identity in the
complete binary trie, we no longer need to follow every step in a path to reach
it. When following a path through the trie, a check at each internal node that
its value is still consistent with the path we intend to take is sufficient to tell us
whether our hash is leading to a bucket or to nothing.

At this point, we are storing more information in each bucket and each in-
ternal tree node, but we are storing many many fewer of them. In fact we are
storing only internal nodes with two children. We have a binary tree. Each
child can be either another internal node with two children of its own, or a
bucket terminating any successful path. This covers all numbers of buckets
except for zero and one. These get handled as special trivial cases. An empty
Hash Trie doesn’t contain the hash, and a singleton Hash Trie contains it only
if the single bucket has a matching hash value. Note that the tree’s structure is
determined by its nature as a trie. In general it will not be balanced, though a
good hash function will tend to produce nearly balanced trees. Even without
guarantees of balance, the finite hash value size and the trie structure deter-
mine a maximum depth of 64, with depths closer to the base 2 log of the num-
ber of stored keys far more likely, and no possibility of a depth larger than the
number of stored keys.

Lets pause a moment to reflect on the structure of an internal node at this
point. We often think of an internal node of a binary tree as a simple matter of
two pointers, one to the left child and one to the right child. As the design has
evolved however, we require more information than that. We have two kinds
of children, leaves and nodes, and we must distinguish them. Furthermore,
we know that in the case of hash collisions a bucket might hold multiple key
value pairs, but there is no need for it to store the hash value multiple times.
Because of this, it makes more sense to store the hash value with the pointer

to the bucket and not within the bucket. Given these needs, we determine to
encode the various cases in a “map” field of the internal node. In our current
conception this encoding can be achieved in two bits. The first bit is set if the
left child is a bucket leaf. The second bit is set if the right child is a bucket leaf.
We can then arrange to store all the data we need to describe the children of
the node. When both map bits are set we need storage for two hash valules
and two pointers to buckets, a total of four pointers of space. An array of
four void pointers will do the job. With other map values, we can use less
space, as a pointer to a child node is all we need. We choose to organize the
storage with the hash values first, in order, followed by the bucket pointers,
in order, followed by the node pointers in order. Stepping through a pointer
array is something modern hardware is built to do very well. The map is used
to interpret the meaning of each pointer value in the array as we step through
it. For some maps, a smaller pointer array is sufficient and we can allow other
considerations to determine whether it is better to be frugal with memory and
allocate only what is necessary, or whether there are benefits to a small waste
that allows less complexity. This mechanism of internal node traversal is where
the ”Array-Mapped” portion of the HAMT name comes from.

There is one more step in design evolution before we reach the implemen-
tation that has been coded. We have a map of two bits at each node, because
that is all that is necessary to encode the cases of a node in our binary tree. The
tree is binary because it is the remnant after reduction of a trie that was binary,
based on a trie path guided one bit at a time. A trie need not be limited to
binary form. Any number of bits can be used at each internal node to select
among a set of children. We can easily make use of a tree branching factor that
is any power of two. Storage for two bit maps are not convenient, but storage
of pointer sized maps are. It happens that the programming is most conve-
nient when we make use of two pointer-sized maps, one for the children that
are buckets, and one for the children that are nodes. The simple encoding is
that a set bit in the bucket map indicates that child is a bucket. A set bit in the
node map indicates that child is a node. A child can only be one or the other,
so the same bit cannot be set in both maps. The encoding in the maps is not
of minimal size, but it is of very useful simplicity. A pointer-sized map con-
tains 64 bits, so the implication is that we use a tree with a branching factor of
64. The same scheme of storing hash values first in order, then bucket pointers
in order, then node pointers in order, with no NULLs anwhere in between is
continued. In a 64-tree, we no longer have a guarantee that all child slots are
filled. In most nodes, many slots will be empty. Our storage needs for the ar-
ray pointer can vary from two (only two child nodes) to 128 (all 64 children are
buckets with associated hash values) elements. With this variability, it tends to
make more sense to allocate only the space that will actually be used. A HAMT
with a branching factor of 64 can reach any bucket in any state in a maximum
depth of 11, with depths closer to the base 64 log of the number of stored keys
far more likely, and no possibility of a depth larger than the number of stored
keys. Recall that the Tcl hash table was designed to expect to follow pointer
chains of up to 3 links on average. Although that is considered a ”constant” ac-

cess design, while this one might most properly be terms a logarithmic access
design, the limits in practice of how large that logarithm can be makes the two
schemes competitive, especially in practical storage volumes.

This section should have introduced you to the structure and functioning of
an HAMT, and the path through the design evolution should have convinced
you it is a properly functioning implementation of the key-value pair storage
and retreival function. Furthermore, you should have some reason to believe
that it at least has a chance at being competitive with hash tables in terms of
time and memory efficiency.

3 Efficient Immutability with the HAMT

Now we come to the new capabilities the HAMT structure makes possible. The
hash table is implemented as a mutable container. When we add a key-value
pair to a hash table, we overwrite parts of it to reflect the new contents. In con-
trast, the HAMT is implemented as an immutable value. Any set of key, value
pairs present in the HAMT determines the structure of that HAMT. When we
seek to add a key-value pair to an existing HAMT, the idea is not to overwrite
the HAMT with a new value, but to produce a completely new HAMT with
the right structure to represent the new hash map value. We implement in the
system language the same value semantics we work so well with coding Tcl
scripts.

The key to success is that the new HAMT we create to represent the new
value after key value insertion shares large portions of the same structure as
the original HAMT. Adding or revising or deleting a single bucket from our
HAMT structure involves tracing a single path from the root to that bucket.
The new HAMT will have new values for the internal nodes along that path to
achieve a structure suitable for the new HAMT value. However, all the other
branches off that path in the original HAMT tree remain unchanged. Because
our design is premised on immutability, there is no need to make copies of
those portions of the HAMT that will be the same in both trees. We just point
to them from both HAMTs. This is the technique that allows us to keep a se-
ries of persistent values representing an arbitrarily long history of modification
without paying the large price of making actual copies of entire structures at
every step. History can be kept as long as it is useful. Sharing is not an en-
emy to the efficiency of an in-place operation. No operations are in-place, but
all operations are (acceptably) efficient, by design. There’s no advice to teach
scripters about how to carefully apply artful code techniques to avoid sharing
that imposes expensive operations. We just don’t have expensive operations in
the first place that need avoiding.

With an understanding of how hash map values are encoded into the HAMT
structure, there are no great mysteries in how to code the creation of new val-
ues from old in the insert and remove operations. We do not belabor the details
here.

There is one issue that the prolific sharing of this approach raises. How can

we know when some node that is a part of some large number of HAMT trees
is no longer in use by any of them and can have its resources returned to the
system? The current implementation uses reference counting to track this, and
that approach brings with it the issues of thread safety. The constant building
up of new structures, even with only a fraction of nodes involved, also appears
to imply a heavier burden on memory allocation facilities. Both of these issues
indicate that HAMT performance may benefit greatly from support by custom
memory systems tailored to frequent allocations, and designed to reap mem-
ory no longer used without the need for (as much) programmer caretaking.
Garbage collecting systems may be the right choice. The languages that have
made most use of these data structure to date all have such memory systems
in their foundations.

4 Implementation and Results

The fossil development branch dgp-refactor contains several prototype ex-
periments on re-designs of Tcl internals. As of this writing, one of those experi-
ments is the implementation of the HAMT data structure in the files tclHAMT.h
and tclHAMT.c. There is also a file tclHAMTObj.c that defines a Tcl ObjType
for holding a HAMT structure as the internal rep of a dictionary value. It also
includes an implementation of an ensemble command hamt that has a handful
of subcommands in common with the dict command and it meant to be a near
replacement of that command in terms of function. With this implementation
we can explore that at least the key promises of the HAMT implementation are
kept.

Create 10 ,000 key value p a i r s
s e t data [lmap [l r e p e a t 20000 {}] t c l : : mathfunc : : rand]

Make a d i c t of them . . .
s e t d [d i c t c r e a t e {∗} $data]

. . . and t e a r i t down without care about sharing .
time { foreach {k v} $data { s e t d [d i c t remove $d $k]}}
==> 5959092 microseconds per i t e r a t i o n

Make a hamt of them
s e t h [hamt c r e a t e {∗} $data]

. . . and t e a r i t down, No need to care about sharing !
time { foreach {k v} $data { s e t h [hamt remove $h $k]}}
==> 21475 microseconds per i t e r a t i o n

Repeat d i c t teardown , but code a r t f u l l y
s e t d [d i c t c r e a t e {∗} $data]

time { foreach {k v} $data { d i c t unset d $k}}
==> 9608 microseconds per i t e r a t i o n

As designed, the HAMT avoids the performance collapse when sharing
drives the Copy On Write mechanism of incumbent dicts into spasms of copy-
ing. Note this example makes use of a hash map of only 10, 000 key value
pairs. If we try to demonstrate with 100, 000 pairs, the failing use of dict
remove takes around 40 minutes! The HAMT teardown time increases in the
predictable way, from about 20 ms to about 200 ms.

When the dict command is used properly according to sharing-aware train-
ing, dict unset can tear down the dict in only 10 ms, about half the time
of the hamt remove approach. For a first pass implementation to be within
about a factor of two of the performance of a released production level com-
mand seems like a promising beginning.

5 Future Prospects

As of this writing, the HAMT implementation includes only the most necessary
primitives. It supports hamt creation, insertion and removal of key value pairs,
and fetching of a value corresponding to a key. It also supports a mechanism
to iterate over all key value pairs in the map, as was necessary to enable string
generation from an arbitrary HAMT value.

In contrast with the dict, the hamt does not preserve storage order. The
order of iterations through a HAMT is imposed by the sorting of hash values.
For this reason, it is not on the path to be an exact replacement for dict.

Adding a size field to support a hamt size command should be a simple
matter. The most intriguing dict subcommand to copy is likely to be hamt
merge. The ease and efficiency of merging tree structures promises there may
be significant gains from the addition of that operation. In fact, it may make
more sense to re-implement hamt create as a series of merges instead of a
series of inserts.

As already mentioned, the performance of the HAMT implementation may
be significantly improved by supporting it with the foundation of a more suit-
able memory allocation scheme. This work would also be key to enabling
thread-sharing of HAMT values to bring the benefits of this work to improved
Tcl concurrency capabilities.

The research and development into the HAMT and related structures has
been reasonably active in recent years, and further variations and innovations
are out there to adapt and adopt. One particular scheme is the use of tran-
sients. Although most HAMT operations continue to act on and act to pro-
duce strictly immutable values, transients are means for programmers to mark
some HAMT values as ones that are known temporary in nature and known
unshared. An example of this is the series of HAMT values we pass through
in a hamt create command acting over several key value pairs. In such a
situation, the HAMT algorithms can be modified to perform a controlled set

of overwrites that honors all commitments, but promises to incrementally im-
prove performance.

6 Conclusions

Early experiments with a HAMT implementation successfully demonstrate its
ability to provide basic dictionary functionality. By design as an immutable
value, it avoids the severe pitfalls that arise when value sharing forces the
incumbent dict implementation into its full Copy On Write operation. Even
when artful scripting in Tcl avoids the pitfalls, the HAMT appears to achieve
performance within a small factor, even in this first sketch implementation
where known improvements have not yet been applied. Further pursuit of
this approach appears to be worthwhile.

