
Translating Executable
Software Models with micca
Andrew Mangogna
Model Realization
24th Annual Tcl/Tk Conference
October 16-20, 2017
Houston, TX

Introduction

● Micca is a program to aid in translating executable software models
○ Micca targets embedded platforms and small to medium scale POSIX systems and uses

“C” as the implementation language.
○ Follow on to pycca (presented at the 2010 Tcl/Tk conference).
○ Micca is built using rosea (presented at the 2015 Tcl/Tk conference).

● Presentation today is focused on Tcl features used to implement micca.
○ Micca is approx. 8600 lines of Tcl code, plus approx. 475 lines of PEG grammar.

● Example model of an automatic washing machine.
○ The example is fully worked out in the micca documentation.

Tcl Features used in micca

● Domain specific language for specification
● Relationally structured data
● Parsing with PEGs
● Code generation by template expansion

Example Model

Washing Machine state model

Washing Machine
domain
specification

Micca DSL

● The DSL is a valid Tcl script.
● DSL commands, by design, are declarative in nature.
● Namespaces are used to insure DSL commands resolve properly.
● DSL commands are evaluated line-by-line, using info complete to

determine command boundaries, to do better error handling.

Relationally structured data

● Micca is a rosea based application
○ Rosea presented at the 2015 Tcl/Tk conference
○ Rosea is to Tcl as micca is to “C”
○ Yes, I eat my own dog food!

● Micca DSL is a text-based interface to the underlying platform model.
○ Populating the platform model is done in a single transaction to insure consistent data.
○ There are 86 classes and 78 relationships in the micca platform model.

● Relational integrity checks insure data consistency is achieved.
○ Declarative constraints require no additional code.

Micca Platform Specific Model

Micca platform
model encoded in
Rosea DSL

Parsing C type names

● Micca has some knowledge of “C” type names.
○ For example, the code generator has to create variable declaration statements.
○ Parser tools in tcllib provide the parser generator.

● “C” types names have an inherent ambiguity.
○ “C” allows new type names to be introduced via the “typedef” statement.
○ Micca resolves the ambiguity using a naming convention.

typedef_name <-
 <upper> <alnum>* '_t' WHITESPACE /
 'MRT_' <alnum>+ WHITESPACE /
 TYPENAME LPAREN identifier RPAREN ;

PEG for “C” type names

PEG datatype (type_name)
type_name <- specifier_qualifier_list abstract_declarator? EOF ;
abstract_declarator <- pointer? direct_abstract_declarator / pointer ;
direct_abstract_declarator <- direct_abstract_declarator_head direct_abstract_declarator_tail* ;
direct_abstract_declarator_head <- LPAREN abstract_declarator RPAREN / direct_abstract_declarator_tail ;
direct_abstract_declarator_tail <- array_declarator / LPAREN parameter_type_list? RPAREN ;
pointer <- (STAR type_qualifier_list?)+ ;

● Plus many, many more production rules.
● Derived from a full C99 PEG written by Ian Piumarta.

AST for “int (*)(void)”
type

Code generation by template expansion

● Two types of code generation
○ Data structures and initialized variables
○ Activity code for model level operations

● Micca uses ::textutil::expander from tcllib to perform the code generation.
○ Two different expander instances for the two types of code generation

● Expanding a template allows the generated code to be ordered properly.

Header file
template

Operation
Declarations

 Find the parameters of the Domain
Operation by traversing the R6
relationship. In the micca platform model,
R6 associates a Domain Operation to zero
or more formal Domain Operation
Parameters.

This series of commands creates a
relation value with the data needed to
generate a function declaration.

 The resulting declaration is created from
data obtained by the query over each
operation.

6

7

22

Domain operation
declarations

Summary

● None of the ideas in micca is particularly novel.
○ Constructing DSLs as Tcl commands using namespaces.
○ Structuring complicated data models using relational techniques.
○ Parsing “C” type names using PEGs
○ Generating “C” code using template expansion.

● Micca is structured similar to a database CRUD application.
○ Populate a data model.
○ Generate a report from the data.

● All is done in Tcl.

Resources

● Micca is freely available
○ Same license as Tcl/Tk
○ Model Realization Tools
○ Chisel app (mrtools)

Micca and rosea resources

● Literate program document
http://repos.modelrealization.com/cgi-bin/fossil/mrtools/doc/trunk
/micca/doc/micca.pdf

● http://repos.modelrealization.com/cgi-bin/fossil/mrtools
● http://chiselapp.com/user/mangoa01/repository/mrtools

TclRAL resources

● http://repos.modelrealization.com/cgi-bin/fossil/tclral
● http://chiselapp.com/user/mangoa01/repository/tclral

http://repos.modelrealization.com/cgi-bin/fossil/mrtools
http://chiselapp.com/user/mangoa01/repository/mrtools/index
http://repos.modelrealization.com/cgi-bin/fossil/mrtools/doc/trunk/micca/doc/micca.pdf
http://repos.modelrealization.com/cgi-bin/fossil/mrtools/doc/trunk/micca/doc/micca.pdf
http://repos.modelrealization.com/cgi-bin/fossil/mrtools
http://chiselapp.com/user/mangoa01/repository/mrtools
http://repos.modelrealization.com/cgi-bin/fossil/tclral
http://chiselapp.com/user/mangoa01/repository/tclral

Questions?
Andrew Mangogna
Model Realization
amangogna@modelrealization.com

