

The State of TclQuadcode

Kevin B. KennyKevin B. Kenny
Donal K. FellowsDonal K. Fellows

Tcl Core TeamTcl Core Team

2424thth Annual Tcl/Tk Conference Annual Tcl/Tk Conference
16-20 October 201716-20 October 2017

What TclQuadcode is:

Native code compiler for Tcl
 Procedures only
 Not yet methods, λ-forms
 Probably never global scripts

Running ahead of time
 Too slow for JIT!

Using advanced technology
 Many recent papers
 Data flow analysis in Static Single

Assigment (SSA)

Multi-year collaboration
 Kevin Kenny, Donal Fellows, Jos

Decoster, others

45k lines of Tcl, 3k lines of C++
 And ≈10k lines of generated code

Still a work in progress
 But a piece of software is never

“done!”

Why TclQuadCode?

Bytecode interpreter is too slow
 Delicate: changes make it slower!
 Unmaintainable: maze of goto
 Close to achievable speed

Making it much faster needs native
code.

Discussed among Tcl’ers for years
 Donal Fellows
 Kevin Kenny
 Don Porter
 Miguel Sofer
 Jos Decoster
 Others…

Very hard problem
Limited time to devote

Getting started

2010: Ozgur Ugurlu (GSoC student)
implements bytecode assembler

 Shows that bytecode can be
manipulated without
compromising safety.

≈2011: Compiler backend
embeddings in Tcl appear

 llvm, tcc
 Generate code without leaving

Tcl

2012: Karl Lehenbauer issues the
FlightAware challenges

 2× and 10× performance bogeys
 Got everyone moving!

2013: TclQuadcode project launched

Early progress

2014: Kevin studies translation of
bytecode to quadcode

 Easier to analyze and manipulate
 Explicit variables rather than stack

Kevin studies data flow analysis
 No SSA yet
 Datalog implemented to aid in

difficult analysis
 Datalog paper at Tcl conference

pre-announces TclQuadcode

Donal works out translation of
quadcode to LLVM IR

 Machine-focused rather than Tcl-
focused

 Huge amount of ‘glue’ needed

Kevin and Donal integrate code at
2014 conference

 Successfully run the first program:
[fib]

The long slog
2015: Add bytecode operations and
builtin commands, one by one.
Implement SSA and eliminate
Datalog

 Datalog not quite fast enough
 SSA enabled analysis with

relatively simple algorithms

Donal announces project formally at
Tcl conference

2016: Largely spend consolidating
and refactoring

 Limited developer time

2017: Big gains:
 Node splitting/loop peeling
 Global/namespace variables
 [upvar]
 Near-complete support for

ordinary built-in commands
(≈200 non-bytecode commands)

Measured results
Name Description Speedup

fib 85 Test simple loops 24.6×

cos 1.2 Test simple floating point 10.9×

wordcounter3 $sentence Dicts, string operations 5.4×

H9fast $longWord Compute a hash code on a string 4.9×

mrtest::calc $tree Recursive tree traversal and arithmetic on nodes 10.8×

impure-caller Best-case numeric code 66.1×

linesearch::getAllLines2 $size Larger numeric-intensive code, collinearity testing 10.3×

flightawarebench::test $size Karl’s first benchmark: geographic calculations 15.5×

Typical: 3-6× for general code, 10× and beyond for numeric-intensive code
Little or no speedup for string and I/O operations (Tcl is pretty good at strings)

How it works

Standard bytecode
compiler

Basic convert

Type
Analysis Quadcode

specialise

IR code issue

Optimise (inline code)
and issue code

Code out has
same interface as
input procedures

Quadcode
impls

Procedure
Definition

(typed quadcode)

Procedure
Definition

(typed quadcode)

Procedure
Definition

(untyped quadcode)

Procedure
Definition

(untyped quadcode)

Function
Definitions

(typed quadcode)

Function
Definitions

(typed quadcode)

Procedure
Definition

(string)

Procedure
Definition

(string)

Procedure
Definition
(bytecode)

Procedure
Definition
(bytecode)

Function
Definitions

(LLVM IR)

Function
Definitions

(LLVM IR)

Function
Definitions

(native code)

Function
Definitions

(native code)

Standard
Library

(LLVM IR)

Standard
Library

(LLVM IR)

Why it works

Avoid overheads
 Memory management, type

checking, value conversion

Enabled by type analysis
 int64_t, double, bool
 Check with [string is]
 Propagate through operations

such as +

Control flow analysis
 Some code paths exclude others
 After [expr {$x + 1}] succeeds, we

know $x is numeric!

Cross-procedure analysis
 Including specialization by type
 One implementation always

string-based

Path splitting

Path splitting

proc x {a} {
 set y 0
 for {set i $a} {$i <= 10} {incr i} {
 incr y $i
 }
 return $y
}

Look at x when called from Tcl
 $a is a string
 $i is a string
 ($i <= 10) is complicated
 [incr y $i] has to extract the

integer from a Tcl_Obj
 Bottom of loop has to put the

integer back in a Tcl_Obj

Path Splitting, continued

y 0←
i $a←
complicated: (i > 10)?
is $i numeric?
i IntFromObj($i)←
y $y + $i←
i $i + 1←
i NewIntObj($i)←
goto

throw error

return $y

Path Splitting, continued

y 0←
i $a←
complicated: (i > 10)?
is $i numeric?
i IntFromObj($i)←
y $y + $i←
i $i + 1←
i NewIntObj($i)←
goto

complicated: (i > 10)?
is $i numeric?
i IntFromObj($i)←
y $y + $i←
i $i + 1←
i NewIntObj($i)←
goto

throw error

return $y

Path Splitting, continued

y 0←
i $a←
complicated: (i > 10)?
is $i numeric?
i IntFromObj($i)←
y $y + $i←
i $i + 1←
i NewIntObj($i)←
goto

integer
complicated: (i > 10)?
is $i numeric?
i IntFromObj($i)←
y $y + $i←
i $i + 1←
i NewIntObj($i)←
goto

throw error

return $y

Nonlocal Variable Access
What’s done:

 [namespace upvar]
 [variable], [global]
 [upvar 1 $arg name] gets –

special handling
 [upvar 1 constantName name] –

gets special handling
 [upvar $n …]
 [upvar #0 …]
 $::path::to::variable

What’s not done:
 Non-constant local names
 [upvar #n], n>0
 [upvar 0]
 $namespace::variable

Why?
 Potential to create aliases for local

vars
 Aliases wreck assumptions!

Also: Access to nonlocal variables is
still slow!

May have to change code to take best advantage

Slower:
proc accum {list} {
 global n; global s; global ss

 foreach a $args {
 incr n
 set s [expr {$s + $a}]
 set ss [expr {$ss + $a}]
 }

}

Faster:
proc accum {list} {
 global n; global s; global ss
 set n_ $n; set s_ $s; set ss_ $ss
 foreach a $args {
 incr n_
 set s_ [expr {$s_ + $a}]
 set ss_ [expr {$ss_ + $a}]
 }
 set n $n_; set s $s_; set ss $ss_
}

There’s still a lot to do!

Long compilation time
 LLVM is slow
 TclQuadcode is slower

● Written in Tcl

Large generated code volumes
 Many copies of procedures after

type specialization
 Long procedures

● Stresses downstream compiler

Incomplete language support
 Many things we think we know

how to do
 Some things are too dynamic to

compile
 Interpreter will always be

available

Next steps

[uplevel]
 Limited initially to constant scripts

and constant args in a caller
 Limited initially to [uplevel 1]

Better alias treatment
 Lift most of the penalty on

nonlocal variables

NRE
 Coroutines, unbounded recursion

Non-hacky arrays
 Currently, arrays are implemented

as dicts.

Procedure inlining
 May be required for [uplevel]

Get user experience!

Would language changes help?

TIP 283: “Fix variable name
resolution quirks”

 Ambiguity in how
$namespace::variable resolved

 Current behaviour absolutely
insane, source of bugs

 Current behaviour also insanely
difficult to implement in
compiled code

Help from the programmer about
aliases and types

 tcl::pragma::type int $value
 tcl::pragma::noalias var1 var2 …
 Maybe others…

tcl::pragma::type

Works on values, not variables.
Asserts that at a given point in
execution, a value has a given
type.
Throws error on wrong type
Useful for documenting API’s and
parameter checking

Simplifies compiled code called from
Tcl.
Forward type analysis on args
possible
Type checking outside loops
Much less node splitting simpler –
and smaller code.

tcl::pragma::noalias

Asserts that a given set of variable
names refer to distinct variables

 Can make exceptions for known
aliases.

 Throws a runtime error if the
constraint is violated

 Useful check few procs can –
survive unexpected aliasing!

Cannot analyze in general without
help Turing-complete problem!–

Can compile much better code
 Uncontrolled aliases are all strings

(because types are unknown)
 Changing any potentially aliased

variable requires converting all
potential aliases back from
strings

 Aliasing therefore has pervasive
effects.

Thank you!

Where TclQuadcode is:

Source code repository:
https://core.tcl.tk/tclquadcode/

Mailing list:
https://sourceforge.net/p/tcl/mailman/tcl-quadcode/

