
When Tcl meets Docker
Dr. Emmanuel Frécon

SSE - Software and Systems Engineering Laboratory
SICS Swedish ICT
emmanuel@sics.se

Abstract
Container technologies and especially Docker are quickly revolutionising
the way we architect, develop and operate large applications. This paper
presents four interrelated tools integrating the Docker sphere with the Tcl
world. Three different containers aim at serving as the base for Tcl
applications. An implementation of the Docker API can aid when glueing
containers together or when supervising or introspecting containers.
Concocter is a watchdog and dynamic generic controller process for using
in containers as the first process. Finally, Machinery integrates all Docker
tools (Engine, Swarm, Compose, Machine) to (re)create entire distributed
architectures in a flexible and deterministic manner.

1. Introduction
Container technologies are enjoying a renewed interest in the IT industry and a lot of this
interest crystallises into Docker and its set of tools. Containers encapsulate all the elements of a
server in microcosm – such as code, runtime, system tools and system libraries, but Docker
also provides related tools to privately network these containers together, bundle, cluster and
scale the containers and manage the lifecycle of bare metal or virtual servers hosting these
containers. Docker’s containerisation technology seems to be entering a period of exponential
growth, which can be measured through the number of “pulls” [1] from the Docker hub [2]. Each
pull witnesses from a new container being started in a (remote) cloud service, thus serving as a
good metrics for the growth of the technology and its increased acceptance and use in
production systems.

This paper presents a number of interrelated tools seeking to ease the use of the Tcl language
for the realisation of Docker-based micro-services architectures. These tools are not only about
authoring the content of containers using Tcl, but also about managing the lifecycle of these
containers as part of larger architectures, including the management of the architectures
themselves. Most of these tools originates from the needs of realising flexible cloud

mailto:emmanuel@sics.se

architectures for the Internet of Things, but they have also been used in the context of an audio
and video streaming solution. All tools are used in (semi-)production environments, from
research prototypes to production servers through industrial pilots.

2. Background and Motivation
The containerised approach is not new: The chroot [3] system was first introduced in 1979,
and refined as the jail [4] command in 2000. Control groups (cgroups) [5], the Linux kernel
feature limiting and isolating resource usage was originally written in 2007. Containerised
applications eliminate the need for each instance to run on its own separate operating system.
Applications can be deployed within seconds and using fewer resources than when running
hypervisors. However, the downside of traditional containerised applications is that they need to
share the same exact OS version as the hosting kernel.

Docker brings portability to the equation. It relies on features such as cgroups [5] and
namespaces [6] to ensure resource isolation but also packages an application with all its
dependencies. This packaging allows the application to run across different operating systems
so that developers can write in any language and easily move their containers from their laptop
to production servers along the continuous integration chain. In doing so, Docker favours
architecting applications using many components (containers), networked together using
well-defined APIs. Each container can be written in the best language for the task at the time.
With growth, necessary rewrites can occur later in the process, on a container basis, without
any implications onto the remaining of the application architecture.

There is a lot of so-called “hype” around Docker and its ecosystem, and this means that the
technology is often used in environments using modern computer languages of various sorts.
This novelty is highly reflected by the language stacks [7] available in the list of curated official
images on the Docker hub. While the main motivation for work described in this paper is to “get
things done”, these tools also provide a way to easily integrate Tcl-based software as part of
containerised architectures, thus making these architectures benefit from the stability,
experience and flexibility that Tcl has had for years.

3. Tcl Containers
At the base of each running Docker container, there is an image. While organisations might
install and use private repositories, many images originate from the central repository available
at the Docker Hub [2]. Apart from a curated list of official Docker images [8], the hub also
contains a large number of public images serving slightly different use cases or outside of the
major trends directing microservice architectures. Typically, popular repositories with a
maintainer who complies to the set of guidelines established for image creation [9] will migrate
into the list of official images.

Docker images are often based on a linux distribution. However, these are not to be mistaken
from running an entire linux system. Instead, the distribution is used to easily access the set of
system libraries that are necessary to run the process(es) that form the core of the containers
created out of the image. Packaging of libraries and their dependencies is an activity that is well
maintained by a various number of linux distributions.

Historically, many Docker images, including the official ones, were based on various versions of
Ubuntu. Matching these images, the image available on the Docker hub as efrecon/tcl is 1

also based on the latest version of Ubuntu. The intended usage for this image is to provide a
“batteries-included” approach for developing (web) applications. It follows the versioning for Tcl
related packages in the underlying Ubuntu distribution. The image is automatically rebuilt every
time the main (official) Ubuntu image is modified, thus benefiting from all security updates that
would affect underlying libraries and depending packages. Image creation is directed by the
open source project efrecon/docker-tcl at github. The project installs most Tcl-related 2

packages part of the main Ubuntu distribution and provides by default a tclreadline capable
prompt for interacting with the shell with docker run -it --rm efrecon/tcl. The exact list
of available packages can be induced from the automatic image creation procedure defined by
the Dockerfile contained in the project.

Images based on the Ubuntu distribution can be of non-negligible sizes. While it can be argued
that storage costs have become negligible, there are still a number of reasons to minimise the
size of images: large images imply longer download times, which might slow down cold
container initialisation, large images might increase costs whenever using minimal virtual
machines at hosting providers, etc. For this very reason, a number of official images provide
variants based on Alpine Linux instead. A major difference between Alpine and Ubuntu is that
the former is based on musl libc [10]. Alpine focuses on providing a minimal system and Alpine
images are in general much more compact. efrecon/mini-tcl is another automatically built 3

image at the Docker hub, this time built on top of the packages available as part of Alpine.
Special attention has been put into bringing in a modern version of the TLS package . Different 4

tags, following the naming conventions of the different versions of Alpine Linux are available
and modern versions of TLS are only available starting from version 3.4. At the time of writing,
the image is only 5.6MB in size, while still being almost on par with its Ubuntu-based sibling.
The image uses a pure Tcl implementation of the readline capabilities to provide a similar
experience at the prompt.

1 The image efrecon/tcl is available on the hub at https://hub.docker.com/r/efrecon/tcl/. Build history,
reflecting mainly changes in the main underlying Ubuntu image is detailed at
https://hub.docker.com/r/efrecon/tcl/builds/.
2 The efrecon/docker-tcl is available under the BSD license at https://github.com/efrecon/docker-tcl.
3 The image efrecon/mini-tcl is available at https://hub.docker.com/r/efrecon/mini-tcl/.
4 A patch was submitted by the author of this article so as to bring in version 1.6.7 of the TLS package, see
http://patchwork.alpinelinux.org/patch/1604/.

https://hub.docker.com/r/efrecon/tcl/
https://hub.docker.com/r/efrecon/tcl/builds/
https://github.com/efrecon/docker-tcl
https://hub.docker.com/r/efrecon/mini-tcl/
http://patchwork.alpinelinux.org/patch/1604/

In addition to these two well-proven images, recent efforts have been put into the creation of a
Tcl Docker image for ARM architectures and the later versions of the Raspberry Pi in particular.
efrecon/armv7hf-debian is an automatically built Debian-based image available with two
different tags: wheezy and stretch. Build automation is courtesy of the resin.os project [11]
and uses a statically built version of qemu for the Intel architecture. Using this binary, it is
possible to create an image containing ARM binaries on the Docker hub, itself running all
continuous delivery pipelines on Intel servers at the time of writing.

4. Docker API
The Docker remote API [12] is a REST-like API for communicating with the docker daemon
either locally or from a distance. This API is not only used for communicating with the so-called
engine, but serves also as the base for controlling swarm, Docker’s clustering implementation.
The API departs somewhat from the REST principles as it offers ways to follow the output of
running containers as a stream of messages, building upon a mechanism similar to the
connection upgrade that occurs when initialising websockets [13].

The Tcl implementation of the API is a work in progress. It provides an interface to introspecting
containers, controlling them (start, stop, etc.) and attaching to them. There is also initial support
to creating new containers. As the Docker daemon running on the host is both able to listen on
a UNIX domain socket or TCP, with HTTP(S) layered on top, the current implementation of the
API includes a minimal reimplementation of the HTTP-language necessary for the task,
including chunk encoding and connection upgrade [14]. To connect to the UNIX domain socket,
the API relays traffic using either socat or nc.

The implementation is provided as an open project on github . In addition to the library 5

implementing the necessary HTTP subset and a partial implementation of the Docker remote
API, the project provides a semi-complex example of an application that is able to send the
output of any container to a remote HTTP server. This can be used for capturing logs of
containers and sending them to a cloud service, or to capture the output of a container and push
it to a message queue for further processing, for example. To minimise HTTP overhead, the
default behaviour for this application is to keep alive established connections.

Processes that need to use the Docker API and talk to a (remote) engine do not need to be
directly installed on the host. Instead, they can be containerised themselves. In this case, such
containers should be given enough privileges for accessing the local UNIX socket on which the
docker daemon listens, and the UNIX socket will be bind mounted into the container so that it
can be accessed by any process that builds upon the library implementing the Docker API. The

5 The git repository efrecon/docker-client is available at https://github.com/efrecon/docker-client under
the premissive BSD license.

https://github.com/efrecon/docker-client

example application described in the previous paragraph is made available for this very use
case on the Docker hub as efrecon/htdocker . As a result, the container can be used as a 6

building block for any micro-service based on Docker, whichever language is used for the
implementation of the remaining containers. Another example of such an image is
efrecon/dockron , an image that can be used to create containers that will operate on remote 7

or local containers at regular intervals in the manner of cron.

5. Concocter
While there is no theoretical limit to the number of processes to encapsulate within a single
Docker container, the recommended behaviour [15] is to run a single process per container and
to bind containers together whenever cooperation is needed. A recurrent behaviour of
containers is to acquire configuration variables from a number of resources (environment
variables, key-value stores, remote servers, etc.) and then to modify or generate configuration
files for the single process to run inside the container. To perform configuration, most containers
use a sidekick shell script. This script is then replaced by the main process to be run as soon as
configuration has ended.

The motivation for concocter is to formalise this process slightly while coping better with
dynamic environments where the value for the (remote) resources affecting the configuration
might change over time. The main goal of concocter is to generate all the necessary
configuration files based on the content of remote locations and other resources before starting
another program. In order to generate the configuration files, concocter supports a flexible
templating system. The content of (remote) resources is represented as variables, and these
variables can be used as part of the configuration files. In addition, concocter has direct
support for Docker through the API described in the previous section. It will be able to generate
configuration files using the current dynamic state of the docker daemon through exposing a
wide number of properties for each running container, including their environment variables.
These environments variables can be used to affect the content of the templated files.

In its most simple form, concocter will get the content of all specified variables, generate
configuration files using the templates and the content of the variables and replace itself with the
program under its control. But concocter is also able to regularly update the content of all
variables, re-generate configuration files whenever content has changed and (re)start or more
properly signal the program under its control as necessary. Whenever run in this detached
mode, using concocter departs from the “one container, one process” principle. However,
concocter will automatically forward all signals that it receives to its underlying process. In

6 Container based on the image at https://hub.docker.com/r/efrecon/htdocker/ will be able to send the output
of any running container on the host to remote web servers.
7 efrecon/dockron is available at https://hub.docker.com/r/efrecon/dockron/ and is automatically built from
a BSD-licensed project host at github: https://github.com/efrecon/dockron.

https://hub.docker.com/r/efrecon/htdocker/
https://hub.docker.com/r/efrecon/dockron/
https://github.com/efrecon/dockron

detached mode, concocter also implements a software watchdog facility. The watchdog
automatically receives all lines output by the process under its control and is able to
communicate back to concocter (restart) or to take other actions. The watchdog is placed in a
separate Tcl interpreter, thus making it easy to forward lines to remote services using
log-oriented protocols or to even restart the host. There are no restrictions as to what the
separate interpreter shall be able to do in order to gain maximum flexibility; this is however at
the expense of security.

A complete description and manual for concocter are available from its open source project
location at github . The implementation delegates variable acquisition to a set of plugins, making 8

it possible to extend concocter for the support of more complex configuration sources such as
key-values stores (consul, vault, zookeeper, etcd , etc.). concocter uses a templating system 9

which has access to the values of all variables and can execute Tcl code in a safe
interpreter [16]. The current set of variable plugins implements the following sources:

Variables which specification starts with a @ are understood as the content of a (possibly)
remote resource. All characters that follow the @ sign should be an URL and concocter will get
the content from that URL and assign it to the variable internally. concoter only recognises
HTTP/S and a special docker construct at present, and considers any other URL as being a
local file. The docker:// construct specifies how to connect to a (remote) Docker daemon and
will automatically instantiate and update variables based on the properties of all containers
running at that daemon, or within that cluster when running against a swarm master.

Variables which specification starts with a = are understood as a proper Tcl mathematical
expression. Within that expression, any string surrounded by % is considered the name of
another variable and the whole string will be replaced by the content of that variable before the
expression is evaluated.

Variables which specification starts with a ̂ are understood as the gathering of file statistics for
the path formed by the remaining of the specification. The variable will be a Tcl array reflecting
the regular calling of file stat on the path. Whenever the path is a directory, the array will
also contain an index called files that will contain the list of files directly in the directory
(no-recursion).

8 efrecon/concocter is the open source repository available at https://github.com/efrecon/concocter under
the permissive BSD license hosting the main implementation for concocter.
9 efrecon/etcd-tcl is an implementation of the v2 of the etcd protocol in Tcl. It is available under the BSD
license at https://github.com/efrecon/etcd-tcl.

https://github.com/efrecon/concocter
https://github.com/efrecon/etcd-tcl

Variables which specification starts with a ! are understood as an external process to execute.
The result of the process will be set to the content of the variable. At present, there is no
protection whatsoever against malicious usage, so you should use this facility with caution.

Otherwise, the specification will be the content of the variable. Within that specification, any
string surrounded by % is considered the name of another variable and it will be replaced by the
content of that variable before the expression is evaluated. In addition to internal variables,
concocter is also able to pick up the content of environment variables and to default to a value
whenever a variable does not exist. The default value is then separated from the name of the
variable using a | sign.

6. Machinery
machinery tries to be the missing piece at the top of the Docker pyramid. machinery is 10

(mostly) a command-line tool that integrates Machine, Swarm, Compose and the Docker Engine
itself to manage the lifecycle of entire clusters. machinery combines a specifically crafted
YAML file format with compose-compatible files to provide an at-a-glance view of whole clusters
and all of their containers. In addition to its command-line interface, machinery also provides a
REST-like API to ease integration and automation with external projects and tools.

Through the provision of an integrated view of entire clusters, machinery eases tasks such as
creating or removing virtual machines hosted at any of the providers supported by Machine, but
also managing the creation or removal of containers onto those machines. Containers can
either be pinpointed to specific machines, either be placed onto the cluster using any of the
controlling facilities provided by Swarm. To quicken container cold starting in dynamic
scenarios, machinery is able to initialise (virtual) machines with a number of docker images
ready to be instantiated whenever needed.

machinery formalises an entire Docker-based infrastructure via a single YAML description file.
In this file, each machine (both bare metal servers and virtual machines are supported) is
described through a number of properties that completely describes its behaviour, purpose and
content. Machines part of the project and cluster can contain the following properties:

● Properties for the creation of the machine, such as all necessary credentials to access
the cloud service (Azure, AWS, etc.) or to access a generic machine (including bare
metal servers).

● Properties for dimensioning the machine: amount of CPUs, memory, storage. The exact
effect of these properties will depend on the target machine: physical machines cannot
change their amount of available memory through changing a YAML file!

10 machinery is available as an open project at github. The project is released under the BSD license and
documentation, code and issues are managed from its home page at: https://github.com/efrecon/machinery.

https://github.com/efrecon/machinery

● Properties for swarming will permit to elect different machines that will act as master in
the cluster, or opt out of the cluster. In addition, free-form labels can be associated to
machines so they can be pinpointed in various ways whenever scheduling containers
into the cluster.

● A prelude and an addendum can contain the specification of any number of scripts or
processes to execute as soon as the machine has been created or once all initialisation
steps have been performed. Both can either be executed locally on the host running
machinery or on the machine host, in which case they can be transferred from any
location in the project’s directory context. The prelude and addendum can be used to
implement anything that would not be formalised and implemented as part of
machinery. Examples would be the opening of specific ports through the Azure CLI or 11

on a generic remote host’s firewall, or the installation and configuration of architecture
specific packages for common storage.

● A list of shares formalises the synchronisation of directories on the host running
machinery and the machine. Whenever the machines are virtual machines on the host,
these will be proper mounts. In other cases, synchronisation will automatically install and
use rsync. Synchronisation will automatically be performed when machines are started
and taken down, and can also be scheduled to happen at regular intervals. For more
complex scenarios such as distributed filesystems, Docker’s own volume can also be
used.

● A list of files and directory specifies content that will be transferred from the project
directory to the (virtual) machine. These can contain, for example, architecture and
project-specific configuration files, secrets, etc.

● A list of registries and credentials to access those registries can be used when the
Docker daemon located on the machines needs to pull images for the creation of
containers, apart from the regular Docker hub.

● A list of images formalises the exact containers that can be run on a specific machine,
but also implements a security mechanism. The default behaviour is to download
publicly available images directly on the remote machine, but to download private
images on the host and securely transfer those images onto the remote machine . This 12

behaviour obsoletes the list of repositories described in the previous point and minimises
the attack vector by providing a single point of possible information leakage (the host
machine).

● YAML files in the Docker compose format [17] and relative to the project directory can be
scheduled to run onto specific machines.

11 There are two major CLI for Azure on github: the initial one written in node, available at
https://github.com/Azure/azure-xplat-cli and the new python based one, available at
https://github.com/Azure/azure-cli.
12 On Windows and Mac, the local virtual machine installed as part of the Docker Toolbox or the Docker for
Windows are used as the source for the private images.

https://github.com/Azure/azure-xplat-cli
https://github.com/Azure/azure-cli

Based on this YAML file syntax, machinery provides a number of commands to (re)create
entire clusters and manage the lifecycle of clusters and their containers, including ways to
search and operate on containers in islands of the cluster. machinery is capable of
long-running sessions through the implementation of an HTTP server. This server provides a
REST-like layer on top of most of the commands that are otherwise available at the
command-line.

7. Future Work
This paper has presented a number of interrelated tools aiming at bringing together the Docker
ecosystem and the flexibility and maturity of the Tcl programming language. These tools are at
varying levels of readiness, but they are all used in production, albeit sometimes under
circumstances that do not require complete implementations of the tasks at hand.
Consequently, planned future work is in varying conditions, depending on the tool.

A major undertaking would consist in taking the necessary steps to output a community
supported Tcl Docker image that would comply to the rules and requirements driving the
adoption of projects into official Docker images [9]. Past experience with the Docker maintainers
have shown that they are opened to proposals and input. Such an endeavour would raise the
awareness of Tcl as a possible player in the field of complex and scalable cloud systems.

The Docker documentation tree does not list the Tcl implementation of the API [18]. Reaching
such an official status would need (near) completeness of the API and to separate the example
application from the library implementation itself. The implementation should also be amended
so as to be able to prefer the use of the various libraries offering support for UNIX sockets over
having to run underlying socat or nc processes to implement the necessary subset of the HTTP
protocol.

concocter is the youngest of all tools described in this paper and still needs to mature to reach
a greater target. concocter should provide a larger set of source plugins for the variables and
be able to dynamically get these plugins from (trusted) remote locations. In addition, plugins and
watchdogs should prepare for larger complexity and the implementation would benefit from
being able to load these from directories and/or mounted archive formats (such as ZIP or TAR).
In general, concocter needs more testing in a variety of environments to squeeze out bugs.

Adversely, machinery is probably the most mature of all tools. The Docker ecosystem is a fast
moving target and Docker benefits from a high momentum to bring in new features at a rapid
pace. machinery is lagging a little behind and still does not benefit from the new networking
and swarm features that were introduced in the two latest versions of the engine. machinery
implements an example of “infrastructure as code” through the provision of a single YAML file
containing or pointing at all the necessary information to (re)create an entire cluster. However,

container scheduling onto machinery-driven clusters still is a manual step and the file format
should be amended to integrate this feature into the core set of commands and features. Finally,
a rudimentary UI could bring more visibility to the project. This interface would benefit from the
REST-like API that is already implemented.

8. Conclusion
Docker has recently emerged as a major player for the realisation of large and scalable cloud
applications. This paper started by the description of a number of images ready for the creation
of Tcl containers in the era of microservice architectures. These images aim at easily writing
containers based on the Tcl language, from server farms to smaller gateways typically used in
IoT applications. The paper also presented an implementation of the Docker API in Tcl as a
library. This library makes it possible to use the glueing capabilities of the language to quickly
implement applications that orchestrates or introspects in heterogeneous environments. In
addition, the paper introduced concocter, an application that systemises the starting and
controlling of processes that are placed in Docker containers, together with how they
dynamically interact and integrate with the remaining of the cluster. Finally, machinery attempts
to fill a missing spot at the top of the Docker pyramid through the implementation of a flexible
cluster controller that offers command-line and web interfaces to manage the whole lifecycle of
Docker-based architectures.

Modern (web) applications are often so-called “one-page applications”, with the majority of the
front-end code written in a dialect of Javascript and communicating to the backend via REST
and JSON APIs. Their backend is often orchestrated through various types of queues and
messaging systems, Apache Kafka [19], RabbitMQ [20], etc. In combination with protocol
implementations [21][22][23] compatible with these messaging platforms, the tools described in
this paper can help leverage the flexibility and maturity of the Tcl language to the realisation of
complete infrastructures where scale and the continuous evolution of the applications are key
requirements.

9. Acknowledgements
Work on the various software components described in this paper has been sponsored by the
Swedish Energy Agency and Vinnova, Sweden’s innovation agency. A smaller slice of the work
was also performed within the framework of JoiceCare AB (now a part of Phoniro Systems AB).

10. References
[1] “Docker Hub Hits 5 Billion Pulls ”, M. Marks, available at

https://blog.docker.com/2016/08/docker-hub-hits-5-billion-pulls/, 2016-08-11.
[2] “Docker Hub ”, available at https://hub.docker.com/, last checked 2016-10-18.
[3] “chroot ”, https://en.wikipedia.org/wiki/Chroot, last checked 2016-09-10

https://blog.docker.com/2016/08/docker-hub-hits-5-billion-pulls/
https://hub.docker.com/
https://en.wikipedia.org/wiki/Chroot

[4] “FreeBSD jail ”, https://en.wikipedia.org/wiki/FreeBSD_jail, last checked 2016-09-10
[5] “cgroups ”, https://en.wikipedia.org/wiki/Cgroups, last checked 2016-09-11
[6] “Linux namespaces ”, https://en.wikipedia.org/wiki/Linux_namespaces, last checked

2016-09-11
[7] “Docker Hub Official Repos: Announcing Language Stacks ”, S. Johnston, available at

https://blog.docker.com/2014/09/docker-hub-official-repos-announcing-language-stacks/,
2014-09-24

[8] “Understanding Official Repos On Docker Hub ”, M. Ponticello, available at
https://blog.docker.com/2015/06/understanding-official-repos-docker-hub/, 2015-06-01.

[9] “Docker Official Images ” (section “Contributing to the Standard Library”), available at
“https://github.com/docker-library/official-images#contributing-to-the-standard-library”, last
checked 2016-10-18.

[10] “musl libc ”, Home Page, available at https://www.musl-libc.org/, last checked 2016-10-18.
[11] “Building ARM containers on any x86 machine, even DockerHub ”, P. Angelatos, available

at https://resin.io/blog/building-arm-containers-on-any-x86-machine-even-dockerhub/,
2015-12-25.

[12] “Docker Remote API v1.24 ”, available at
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.24/, last checked
2016-10-18.

[13] “The WebSocket Protocol “, I. Fette, A. Melnikov, IETF RFC 6455, 2011-12.
[14] “Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing ”, R. Fielding, J.

Reschke, IETF RFC 7230, 2014-06.
[15] “Best practices for writing Dockerfiles ”, available at

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/, last
checked 2016-10-18.

[16] “The Safe-Tcl Security Model ”, J. Levy, L. Demailly, J. Ousterhout, B. Welch,
Proceedings of the USENIX Annual Technical Conference (NO 98), New Orleans,
Louisiana, 1998-06.

[17] “Compose file reference “, available at https://docs.docker.com/compose/compose-file/,
last checked 2016-10-18.

[18] “Docker Remote API client libraries “, available at
https://docker.github.io/engine/reference/api/remote_api_client_libraries/, last checked
2016-10-18.

[19] “Kafka: a distributed messaging system for log processing ”, J. Kreps, N. Narkhede, J.
Rao, ACM SIGMOD Workshop on Networking Meets Databases, 2011-06-12.

[20] “RabbitMQ ”, available at https://www.rabbitmq.com/, last checked 2016-10-20.
[21] “KafkaTcl, a Tcl interface to the Apache Kafka distributed messaging system ”, available

at https://github.com/flightaware/kafkatcl, last checked 2016-10-20.
[22] “RabbitMQ TCL ”, available at https://github.com/dereckson/rabbitmq-tcl, last checked

2016-10-20.

https://en.wikipedia.org/wiki/FreeBSD_jail
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Linux_namespaces
https://blog.docker.com/2014/09/docker-hub-official-repos-announcing-language-stacks/
https://blog.docker.com/2015/06/understanding-official-repos-docker-hub/
https://github.com/docker-library/official-images#contributing-to-the-standard-library
https://www.musl-libc.org/
https://resin.io/blog/building-arm-containers-on-any-x86-machine-even-dockerhub/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.24/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/compose/compose-file/
https://docker.github.io/engine/reference/api/remote_api_client_libraries/
https://www.rabbitmq.com/
https://github.com/flightaware/kafkatcl
https://github.com/dereckson/rabbitmq-tcl

 [23] “biot - Information Pipelines in IoT-Clouds ”, E. Frécon, Proceedings of the 22nd Tcl
Conference, Manassas, Virginia, 2015-10-22.

