
2016 Tcl Conference
Don Porter
Tcl/Tk Release Manager

Tcl Values:
Past, Present & Tales from the Future

2016 Tcl Conference
Don Porter
Tcl/Tk Release Manager

Why I Am Working on TIP 445.

Tcl Value?

● Returned by command

● Stored in variable

● Passed as an argument

● Held in a list.

 set v [cmd arg]

Tcl Foundations

int main(int argc, char *argv[]) {

 return 0;

}

● argv[i] points to NUL-terminated char array.

● Value: finite sequence of {0x01 – 0xFF}.

Tcl 7 Value
argv →Tcl_CmdProc → Tcl_SetResult(result, freeProc)

● Establishes the semantics of Tcl values.

– “Everything is a string”

– Implies: no NULL value; names, not references; Tcl typing

– Revisions can optimize, but not escape this model.

● Pros

– matches C, familiar to extension writers

● Cons

– Fails “8-bit clean” (and Unicode completeness)

– Conversion burdens make things slow.

Tcl 8(.1) Value: Tcl_Obj
objv →Tcl_ObjCmdProc → Tcl_SetObjResult(objPtr)

argv →Tcl_CmdProc → Tcl_SetResult(result, freeProc)

● objv[i] points to a Tcl_Obj struct (24 or 40 bytes each):

{int refCount;

 char *bytes; int length; /* String Representation. */

 Tcl_ObjType *typePtr; internalRep} /* Other Representation */

● Internal Rep goes along for the ride – saves conversions.

● Tcl_ObjType (optionally) defines routines so Tcl can command...
– Conversion Internal Rep to String Rep Tcl_GetString()

– Free an Internal Rep Tcl_DecrRefCount(), Tcl_FreeIntRep()

– Duplicate an Internal Rep Tcl_DuplicateObj()

– Create an Internal Rep of the value (if possible) Tcl_ConvertToType()

● objPtr→bytes is Tcl 7 value. Easy accommodation of Tcl 7 conventions.
– Revised encoding. Modified UTF-8 encodes entire BMP, including U+0000

– Lost freeProc! bytes is always ckalloc()ed. Always making copies!

Tcl 8 Value: The Stork
 Tcl_Obj struct:

{refCount;

 bytes; length; /* String Rep */

 Tcl_ObjType *typePtr; internalRep} /* Other Rep */

● Either bytes or typePtr must be non-NULL.

● Both can be non-NULL, but then must agree.

● When bytes == NULL, say the value is “pure”.

● A New internalRep destroys an old one. (“shimmer”)

– Conversion via string rep, or by being 'friends'

Tcl 8 Value: The Good

● All code written to Tcl 7 still works.

● Tcl 8 value resolves all Tcl 7 value cons!!!

– Much reduced conversion burden.

– Binary-safe, Support of Unicode's BMP

● In practice, programmers accepted it.

– Mmmmm…. Yummy carrots.

Tcl 8 Value: The Bad

● Unicode grew, Tcl value alphabet didn't.

● Inessential properties of Tcl_Obj

– Limit capabilities

– Burden evolution

– Tcl's value model is consistent with many programming
innovations while the properties of the Tcl_Obj struct are not.

● Pure functional, immutable data structures, HAMT, RRB trees, ropes.

– Especially troublesome for large scaling.

Tcl_Obj: Inessential properties
{refCount;

 bytes; length; /* String Rep */

 Tcl_ObjType *typePtr; internalRep} /* Other Rep */

● Size limited (INT_MAX = 2G)

● Open structs

● Mutable / Copy on Write

● RefCounted → Thread isolated.

● String Rep is Tcl 7 value without freeProc

● At most one additional Rep. (“hydra”)

● Each Rep is absent or complete. No partial conversions.

Example

% proc K {x y} {return $x}

% set x [string repeat a 3000000]

% time {set x [string replace $x 2 2 b]} 100

2235.11385 microseconds per iteration

% time {set x [string replace [K $x [unset x]] 2 2 b]} 100

4.20126 microseconds per iteration

● Impact of sharing is script visible.

Tcl 9 Value – New Struct?
valv →Tcl_ValCmdProc → Tcl_SetValResult(val)

objv →Tcl_ObjCmdProc → Tcl_SetObjResult(objPtr)

argv →Tcl_CmdProc → Tcl_SetResult(result, freeProc)

● Or is better encapsulated Tcl_Obj struct flexible
enough?

● Needs experimentation and interfaces to support it.

TIP 445

● Tcl_FreeInternalRep(obj)

– Replaces obj→typePtr→freeIntRepProc(obj)

● Tcl_InitStringRep(…)

– Replaces direct alloc and write to bytes

● Tcl_StoreIntRep(...), Tcl_FetchIntRep(…)

– Act on internalRep without direct field access

– Without assuming single internalRep

● ….and more as work reveals.

Tcl 9 value desirables?

● Code written to Tcl 7 and 8 should still work.

● Much increased sized limitations.

● Immutable

● Thread-sharable

● Reduced shimmer impact

● Full Unicode, with canonical equivalence

● Share data, not values

Closing Thoughts

● Should we invent a new structure or modify existing one?

– How much can inessentials be purged without upsetting
released base that assumes them?

– Experiments in progress.

● Can changes be completed in reasonable time?

– Interface first, for 9.0.

– Continued progress in 9.1, 9.2, etc.

● Will coders accept and adapt?

– Need big yummy carrots.

	The (Active) State of Tcl
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

