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SCIENTIFIC WORKFLOWS
Big picture: solutions for scientific scripting
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The Scientific Computing Campaign

▪ The Swift system addresses most of these components 
▪ Primarily a language, with a supporting runtime and toolkit
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Goals of the Swift language

Swift was designed to handle many aspects of the computing campaign 

▪ Ability to integrate many application components into a new workflow application 

▪ Data structures for complex data organization 

▪ Portability- separate site-specific configuration from application logic 

▪ Logging, provenance, and plotting features
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THINK RUN

COLLECTIMPROVE



Goal: Programmability for large scale computing

▪ Approach: Many-task computing: Higher-level applications 
composed of many run-to-completion tasks:   
input→compute→output

▪ Programmability 
– Large number of applications have this natural structure at upper 

levels: Parameter studies, ensembles, Monte Carlo, branch-and-bound, 
stochastic programming,  UQ 

– Easy way to exploit hardware concurrency 

▪ Experiment management 
– Address workflow-scale issues: data transfer, application invocation



The Race to Exascale

▪ The exaflop computer: a quintillion (1018) 
floating point operations per second 

▪ Expected to have massive (billion-way)  
concurrency 

▪ Significant issues must be overcome 
– Fault-tolerance 
– I/O 
– Heat and power efficiency 
– Programmability! 

▪ Can scripting systems like Tcl help? 
– I think so!
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#1 Tianhe-2: 33 PF, 18 MW (China)

#2 Titan: 20 PF, 8 MW (Oak Ridge)

#5 Mira: 8.5 PF, 4 MW (Argonne)

= 2.5 MW

TOP500 leaderboard



Outline

▪ Introduction to Swift/T  
– Introduction to MPI 
– Introduction to ADLB 
– Introduction to Turbine, the Swift/T runtime 

▪ Use of Tcl in Swift/T  

▪ Interesting Swift/T features 

▪ Applications 

▪ Performance
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SWIFT/T OVERVIEW
High-performance dataflow for compositional programming
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Swift programming model:  
all progress driven by concurrent dataflow

▪ A() and B() implemented in native code 

▪ A() and B()run in concurrently in different processes 

▪ r is computed when they are both done 

▪ This parallelism is automatic 
▪ Works recursively throughout the program’s call graph
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(int r) myproc (int i, int j) 
{ 
    int x = A(i);     
    int y = B(j); 
    r = x + y; 
} 



Swift programming model

▪ Data types 
int    i = 4; 
int    A[]; 
string s = "hello world"; 

▪ Mapped data types 
file image<"snapshot.jpg">; 

▪ Structured data 
image  A[]<array_mapper…>; 
type protein { 
 file pdb; 
 file docking_pocket; 
} 
bag<blob>[] B;

10

▪ Conventional expressions 
if (x == 3) {  
    y = x+2; 
    s = sprintf("y: %i", y); 
} 

▪ Parallel loops 
foreach f,i in A { 
    B[i] = convert(A[i]); 
} 

▪ Implicit data flow 
merge(analyze(B[0], B[1]), 
      analyze(B[2], B[3])); 

Swift: A language for distributed parallel scripting, J. Parallel Computing, 2011



Swift/T: Swift for high-performance computing
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Had this: 
(Swift/K)

For extreme scale,  
we need this:  

(Swift/T)

• Wozniak et al. Swift/T: Scalable data flow programming for 
distributed-memory task-parallel applications . Proc. CCGrid, 
2013. 



Submit host (login node, laptop, Linux server)

Data server

Swift/K runs parallel scripts on a broad range  
of parallel computing resources

Original implementation:  
Swift/K (c. 2006) - scripting for distributed computing  
Still maintained and supported

Clouds: 
Amazon EC2, 

XSEDE Wispy, …

Application 
Programs

1018

1015
Swift 
script



Pervasive parallel data flow

• Simple dataflow DAG on scalars 
• Does not capture generality of scientific computing and analysis 

ensembles: 
• Optimization-directed iterations 
• Conditional execution 
• Reductions



MPI: The Message Passing Interface

▪ Programming model used on large supercomputers 
▪ Can run on many networks, including sockets, or 

shared memory 
▪ Standard API for C and Fortran, other languages 

have working implementations 
▪ Contains communication calls for  

– Point-to-point (send/recv) 
– Collectives (broadcast, reduce, etc.) 

▪ Interesting concepts 
– Communicators: collections of  

communicating processing and  
a context 

– Data types: Language-independent  
 data marshaling scheme
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ADLB: Asynchronous Dynamic Load Balancer

▪ An MPI library for master-worker  
workloads in C 

▪ Uses a variable-size, scalable  
network of servers 

▪ Servers implement  
work-stealing 

▪ The work unit is a byte array 
▪ Optional work priorities, targets, 

types 

▪ For Swift/T, we added: 
– Server-stored data 
– Data-dependent execution 
– Tcl bindings!
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Servers

Workers

• Lusk et al. More scalability, less pain: A 
simple programming model and its 
implementation for extreme computing. 
SciDAC Review 17, 2010.



Swift/T Compiler and Runtime

▪ STC translates high-level 
Swift  
expressions into low-level  
Turbine operations:
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– Create/Store/Retrieve typed data 
– Manage arrays 
– Manage data-dependent tasks

• Wozniak et al. Large-scale application composition via distributed-memory  
data flow processing. Proc. CCGrid 2013.  

• Armstrong et al. Compiler techniques for massively scalable implicit  
task parallelism. Proc. SC 2014.



Turbine Code is Tcl

▪ Why Tcl? 
– Needed a simple, textual compiler target for STC 
– Needed to be able to post code into ADLB 
– Needed to be able to easily call C (ADLB and user code) 

▪ Turbine  
– Includes the Tcl bindings for ADLB  
– Builtins to implement Swift primitives in Tcl  

(arithmetic, string operations, etc.) 

▪ Swift/T Compiler (STC)  
– A Java program based on ANTLR 
– Generates Tcl (contains a Tcl abstract syntax tree API in Java) 
– Performs variable usage analysis and optimization
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Distributed Data-dependent Execution

▪ STC can generate arbitrary Tcl but Swift requires dataflow processing 

▪ Implemented this requirement in the Turbine rule statement 

▪ Rule syntax: 
rule [ list inputs ] "action string" options… 

▪ All Swift data is registered with the ADLB distributed data store 
▪ Rules post data-dependent tasks in ADLB 

▪ When all inputs are stored, the action string is released 
▪ The action string is a Tcl fragment
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Translation from Swift to Turbine

▪ Swift: 

▪ Turbine/Tcl:
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x1 = 3; 
s  = "value: "; 
x2 = 2; 
int x3; 
printf("%s%i", s, x3); 
x3 = x1+x2;

literal  x1 integer 3 
literal  s  string  "value: " 
literal  x2 integer 2 
allocate x3 integer 
rule [ list $x3 ] "puts \[retrieve $s\]\[retrieve $x3\]" 
rule [ list $x1 $x2 ] \ 
 "store_integer $x3 \[expr \[retrieve $x1\]+\[retrieve $x2\]\]"

Tcl variables contain TDs (addresses)

STC



Interacting with the Tcl Layer

▪ Can easily specify a fragment of Tcl to access: 

▪ Automatically loads the given Tcl package/version (turbine 0.0) 

▪ STC substitutes Tcl variables with the <<·>> syntax 

▪ Typically want to simply reference some greater Tcl or native code 
library
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 (int c) add(int a, int b) "turbine" "0.0" [ 
   "set <<c>> [ expr <<a>> + <<b>> ]" 
 ];



A[3] = g(A[2]);

Example distributed execution 

▪ Code 

▪ Evaluate dataflow operations 

▪ Workers: execute tasks
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A[2] = f(getenv(“N”));

• Perform getenv() 
• Submit f

• Process f 
• Store A[2]

• Subscribe to A[2] 
• Submit g 

• Process g 
• Store A[3]

Task put Task put

No
tif

ica
tio

n
• Wozniak et al. Turbine: A distributed-memory dataflow engine for high 

performance many-task applications. Fundamenta Informaticae 128(3), 
2013

Task get Task get



Examples!
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Extreme scalability for small tasks
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• 1.5 billion tasks/s on 512K cores of Blue Waters, so far 

• Armstrong et al. Compiler techniques for massively scalable 
implicit task parallelism. Proc. SC 2014.



Characteristics of very large Swift programs
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▪ The goal is to support billion-way 
concurrency: O(109) 

▪ Swift script logic will control 
trillions of variables and data 
dependent tasks 

▪ Need to distribute Swift logic 
processing over the HPC compute 
system

int X = 100, Y = 100;
int A[][];
int B[];
foreach x in [0:X-1] {
  foreach y in [0:Y-1] {
    if (check(x, y)) {
      A[x][y] = g(f(x), f(y));
    } else {
      A[x][y] = 0;
    }
  }
  B[x] = sum(A[x]);
}



Swift/T: Fully parallel evaluation                                  
of complex scripts
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int X = 100, Y = 100;
int A[][];
int B[];
foreach x in [0:X-1] {
  foreach y in [0:Y-1] {
    if (check(x, y)) {
      A[x][y] = g(f(x), f(y));
    } else {
      A[x][y] = 0;
    }
  }
  B[x] = sum(A[x]);
}

• Wozniak et al. Large-scale application composition via distributed-memory  
data flow processing. Proc. CCGrid 2013. 



output(p(i)); 
 

output(p(i)); 
 

x = g(); 
if (x > 0) { 
  n = f(x); 
  foreach i in [0:n-1] { 
    output(p(i)); 
  }}  
 

Swift code in dataflow

▪ Dataflow definitions create nodes in the dataflow graph 
▪ Dataflow assignments create edges 
▪ In typical (DAG) workflow languages, this forms a static graph 
▪ In Swift, the graph can grow dynamically – code fragments are 

evaluated (conditionally) as a result of dataflow 
▪ Data dependent-tasks are managed by ADLB 
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x = g(); 
 

x

n

foreach i … {  
  output(p(i)); 
 

if (x > 0) {  
  n = f(x); … 

 



Hierarchical programming model
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▪ Including MPI libraries



Support calls to embedded interpreters
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We have plugins 
for Python, R, 
Tcl, Julia, and 
QtScript• Wozniak et al. Toward computational experiment management 
via multi-language applications.  Proc. ASCR SWP4XS, 2014.  

• Wozniak et al. Interlanguage parallel scripting for distributed-
memory scientific computing.  Proc. CLUSTER 2015.



www.ci.uchicago.edu/swift    www.mcs.anl.gov/exm

▪ Write site-independent scripts in Swift language  
▪ Execute on scalable runtime: Turbine  
▪ Automatic parallelization and data movement 
▪ Run native code or script fragments as  

application tasks 
▪ Rapidly subdivide large partitions for  

MPI libraries using MPI 3
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Swift 
control 
process

Swift 
control 
process

Swift/T 
control 
process

Swift worker 
process 

C C+
+

Fortr
an

C C+
+

Fortr
an

C C++ Fortran

MPI

Swift/T worker

64K cores of Blue 
Waters 
2 billion Python tasks  
14 million Pythons/s

Swift/T: Enabling high-performance scripting



NOVEL FEATURES: RUNTIME
Swift/T features for task control
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Task priorities
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▪ User-written annotation on function call 

▪ Priorities are best-effort and are relative to tasks on a given ADLB 
server 

▪ Could be used to:  
– Promote tasks that release lots of other dependent work 
– Compute more important work early (before allocation expires!) 
– Deal with trailing tasks (next slide) 

foreach i in 0:N-1 {  
  @prio=i f(i);  
}



Prioritize long-running tasks

▪ Variable-sized tasks produce trailing tasks: 
addressed by exposing ADLB task priorities at language level



Stateful external interpreters

▪ Desire to use high-level, 3rd party algorithms in Python, R to 
orchestrate Swift workflows, e.g.: 
– Python DEAP for evolutionary algorithms 
– R language GA package 

▪ Typical control pattern:  
– GA minimizes the cost function 
– You pass the cost function to the library and wait 

▪ We want Swift to obtain the parameters from the library 
– We launch a stateful interpreter on a thread 
– The "cost function" is a dummy that returns the  

parameters to Swift over IPC 
– Swift passes the real cost function results back  

to the library over IPC 

▪ Achieve high productivity and high scalability 
– Library is not modified – unaware of framework! 
– Application logic extensions in high-level script

Load balancing

Swift worker

Python/R

IPC GA

MPI Process

Tasks Results

MPI



Unnecessary details: Epidemics ensembles
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Epidemic simulators

• Wozniak et al. Many Resident Task Computing in Support of 
Dynamic Ensemble Computations.  Proc. MTAGS 2015.



Ebola spread modeling

▪ Epidemic analysis- combining agent-based models with observation 
▪ Received emergency funding late last year 
▪ Combines Python-based evolutionary algorithm with high-

performance agent-based epidemic modeling code 
▪ Want to compare simulations with observations in real-time as 

disease spreads through a population
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Application  
Location  
annotations

Features for Big Data analysis
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• Location-aware 
scheduling 
User and runtime coordinate data/
task locations

• Collective I/O 
User and runtime coordinate data/
task locations

Runtime 
Hard/soft locations

Distributed 
data

Application  
I/O hook

Runtime 
MPI-IO transfers

Distributed 
data

Parallel FS

• F. Duro et al.  Exploiting data 
locality in Swift/T workflows using 
Hercules .  
Proc. NESUS Workshop, 2014. 

• Wozniak et al.  Big data staging with 
MPI-IO for interactive X-ray science. 
Proc. Big Data Computing, 2014. 

Cache FS



Abstract, extensible MapReduce in Swift

main {
  file d[];
  int N = string2int(argv("N"));
  // Map phase
  foreach i in [0:N-1] {
    file a = find_file(i);
    d[i] = map_function(a);
  }
  // Reduce phase
  file final <"final.data"> = merge(d, 0, tasks-1);
}

(file o) merge(file d[], int start, int stop) {
  if (stop-start == 1) {
    // Base case: merge pair
    o = merge_pair(d[start], d[stop]);
  } else {
    // Merge pair of recursive calls
    n = stop-start;
    s = n % 2;
    o = merge_pair(merge(d, start,     start+s),
                   merge(d, start+s+1, stop));
  }}

37

• User needs to implement  
map_function() and merge()

• These may be implemented  
in native code, Python, etc. 

• Could add annotations 
• Could add additional custom  

application logic 



Hercules

▪ Want to run arbitrary workflows over distributed filesystems that expose 
data locations: Hercules is based on Memcached 
– Data analytics, post-processing 
– Exceed generality MapReduce: without losing data optimizations 

▪ Can optionally send a Swift task to a particular location with simple 
syntax:  

▪ Can obtain ranks from hostnames:  
     int rank = hostmapOneWorkerRank("my.host.edu"); 

▪ Can now specify location constraints:  
     location L = location(rank, HARD|SOFT, RANK|NODE); 

▪ Much more to be done here!
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foreach i in 0:N-1 {  
  location L = locationFromRank(i); 
  @location=L f(i);  
}



GeMTC: GPU-enabled Many-Task Computing

Goals: 
1) MTC support     2) Programmability 
3) Efficiency           4) MPMD on SIMD 
5) Increase concurrency to warp level 

  

Approach:  
Design & implement GeMTC 
middleware: 
1) Manages GPU   2) Spread host/
device 
3) Workflow system integration (Swift/
T)

Motivation: Support for MTC on all accelerators!



LOGGING AND DEBUGGING
What just happened?
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Logging and debugging in Swift

▪ Traditionally, Swift programs are debugged through the log or the 
TUI (text user interface) 

▪ Logs were produced using normal methods, containing:  
– Variable names and values as set with respect to thread 
– Calls to Swift functions 
– Calls to application code 

▪ A restart log could be produced to restart a large Swift run after 
certain fault conditions 

▪ Methods require single Swift site: do not scale to larger runs
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Logging in MPI

▪ The Message Passing Environment (MPE) 
▪ Common approach to logging MPI programs 
▪ Can log MPI calls or application events – can store arbitrary data 
▪ Can visualize log with Jumpshot 

▪ Partial logs are stored at the site of  
each process 

– Written as necessary to shared  
file system 

• in large blocks 
• in parallel 

– Results are merged into a big log file  
(CLOG, SLOG) 

▪ Work has been done optimize the  
file format for various queries
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Logging in Swift & MPI
▪ Now, combine it together 
▪ Allows user to track down erroneous Swift program logic 

▪ Use MPE to log data, task operations, calls to native code 
▪ Use MPE metadata to annotate events for later queries 

▪ MPE cannot be used to debug native MPI programs that abort 
– On program abort, the MPE log is not flushed from the process-local cache 
– Cannot reconstruct final fatal events 

▪ MPE can be used to debug Swift application programs that abort 
– We finalize MPE before aborting Swift  
– (Does not help much when developing Swift itself) 
– But primary use case is non-fatal arithmetic/logic errors
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• Wozniak et al. A model for tracing and debugging large-scale task-parallel 
programs with MPE.  Proc LASH-C, 2013.



Visualization of Swift/T execution
▪ User writes and runs Swift script  
▪ Notices that native application code is called with nonsensical inputs 
▪ Turns on MPE logging – visualizes with MPE 

– PIPS task computation  Store variable         Notification (via control task)  
Blue: Get next task        Retrieve variable   
Server process (handling of control task is highlighted in yellow) 

▪ Color cluster is task transition:  
▪ Simpler than visualizing messaging pattern (which is not the user’s code!) 
▪ Represents Von Neumann computing model – load, compute, store
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Time
Jumpshot view of PIPS application run
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Debugging Swift/T execution

▪ Starting from GUI, user can identify erroneous task  
– Uses time and rank coordinates from task metadata 

▪ Can identify variables used as task inputs  

▪ Can trace provenance of those variables back in reverse dataflow
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erroneous task

Aha! Found script defect. ← ← ←  (searching backwards)



APPLICATIONS
Molecular dynamics simulation, X-ray science data processing

46



Can we build a Makefile in Swift?

▪ User wants to test a variety of compiler optimizations 
▪ Compile set of codes under wide range of possible configurations 
▪ Run each compiled code to obtain performance numbers 
▪ Run this at large scale on a supercomputer (Cray XE6) 

▪ In Make you say:  
CFLAGS = ...  
f.o : f.c  
    gcc $(CFLAGS) f.c -o f.o  
 
In Swift you say:  
 
string cflags[] = ...;  
f_o = gcc(f_c, cflags);  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CHEW example code

Apps  
app (object_file o) gcc(c_file c, string cflags[]) { 
// Example: 
//  gcc   -c   -O2    -o  f.o f.c 
   "gcc" "-c" cflags "-o" o   c; 
} 

app (x_file x) ld(object_file o[], string ldflags[]) { 
// Example: 
//  gcc           -o  f.x f1.o f2.o ... 
   "gcc" ldflags "-o" x   o; 
} 

app (output_file o) run(x_file x) { 
  "sh" "-c" x @stdout=o; 
} 

app (timing_file t) extract(output_file o) { 
  "tail" "-1" o "|" "cut" "-f" "2" "-d" " " @stdout=t; 
}

Swift code 
  string program_name = "programs/program1.c"; 
  c_file c = input(program_name); 
  // For each 
  foreach O_level in [0:3]  { 
    make file names… 
    // Construct compiler flags 
    string O_flag = sprintf("-O%i", O_level); 
    string cflags[] = [ "-fPIC", O_flag ]; 
    object_file o<my_object> = gcc(c, cflags); 
    object_file objects[] = [ o ]; 
    string ldflags[] = []; 
    // Link the program 
    x_file x<my_executable> = ld(objects, ldflags); 
    // Run the program 
    output_file out<my_output> = run(x); 
    // Extract the run time from the program output 
    timing_file t<my_time> = extract(out);
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Swift integration into NAMD and VMD
www.ks.uiuc.edu/Research/swift

See Dalke and Schulten, Using Tcl for  
Molecular Visualization and Analysis, 
1997.



NAMD Replica Exchange Limitations

▪ One-to-one replicas to Charm++ partitions: 
– Available hardware must match science. 

– Batch job size must match science. 

– Replica count fixed at job startup. 

– No hiding of inter-replica communication latency. 

– No hiding of replica performance divergence. 

▪ Can a different  
programming  
model help?



Benefits of using Swift within NAMD / VMD

Work by Jim Phillips and John Stone of UIUC NAMD Group (Schulten Lab) : 

• NAMD 2.10 and VMD 1.9.2 can run Swift dataflow 
programs using functions from their embedded Tcl 
scripting language.  

• NAMD and VMD users are already familiar with Tcl, and 
Tcl allows access to the two apps’ complete 
functionality.  

• Swift has been used to demonstrate n:m multiplexing of 
n replicas across a smaller arbitrary number m of NAMD 
processes 

• This is very complex to do with normal NAMD scripting 
that can be expressed naturally in under 100 lines of 
Swift/T code.



NAMD/VMD and Swift/T

Typical Swift/T Structure

MD1.cMD1.c MD2.cppMD2.cpp viz.cppviz.cpp
SWIG-generated Tcl wrappersSWIG-generated Tcl wrappers

Swift/T runtimeSwift/T runtime
MPI

Top-level dataflow script
exchange.swift

Top-level dataflow script
exchange.swift

NAMD/VMD Structure

Swift/T runtimeSwift/T runtime

NAMD (C++)NAMD (C++)

Tcl Evaluation (uplevel-eval)Tcl Evaluation (uplevel-eval)

Top-level dataflow script
exchange.swift

Top-level dataflow script
exchange.swift



Future work: Extreme scale ensembles
▪ Enhance Swift for exascale experiment/simulate/analyze 

ensembles 
– Deploy stateful, varying sized jobs 
– Outermost, experiment-level coordination via dataflow 
– Plug in experiments and human-in-the-loop models (dataflow filters) 
– JointLab collaboration: Connecting bulk task-task data transfer with 

Swift

53

Big job 1: Type 
A Big job 2: Type A Big job 3: Type B

Small job 
1: Type A

Small job 
2: Type A

Small job 
3: Type B

Small job 
4: Type B

Small job 
4: Type C

Small job 
5: Type D

APS



Technology transfer – Parallel.Works

An incubation venture of the University of Chicago’s CIE: Chicago Innovation Exchange  
http://cie.uchicago.edu



Technology transfer – Parallel.Works



Technology transfer – Parallel.Works



Summary
▪ Swift: High-level scripting for outermost programming constructs 
▪ Heavily based on Tcl! 
▪ Described novel features for task control and big data computing 

on clusters and supercomputers 
▪ Thanks to the Swift team: Mike Wilde, Ketan Maheshwari, Tim 

Armstrong, David Kelly, Yadu Nand, Mihael Hategan, Scott Krieder, 
Ioan Raicu,  
Dan Katz, Ian Foster 

▪ Thanks to the Tcl organizers 
  
▪ Questions?
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THINK RUN

COLLECTIMPROVE


