
Swift/T: Dataflow Composition of Tcl Scripts  
 for Petascale Computing

Justin M Wozniak
Argonne National Laboratory and University of Chicago

http://swift-lang.org/Swift-T wozniak@mcs.anl.gov

SCIENTIFIC WORKFLOWS
Big picture: solutions for scientific scripting

2

The Scientific Computing Campaign

▪ The Swift system addresses most of these components
▪ Primarily a language, with a supporting runtime and toolkit

3

THINK about
what to run

next

RUN a battery  
of tasks

COLLECT
results

IMPROVE
methods and

codes

Goals of the Swift language

Swift was designed to handle many aspects of the computing campaign

▪ Ability to integrate many application components into a new workflow application

▪ Data structures for complex data organization

▪ Portability- separate site-specific configuration from application logic

▪ Logging, provenance, and plotting features

4

THINK RUN

COLLECTIMPROVE

Goal: Programmability for large scale computing

▪ Approach: Many-task computing: Higher-level applications
composed of many run-to-completion tasks:
input→compute→output

▪ Programmability
– Large number of applications have this natural structure at upper

levels: Parameter studies, ensembles, Monte Carlo, branch-and-bound,
stochastic programming, UQ

– Easy way to exploit hardware concurrency

▪ Experiment management
– Address workflow-scale issues: data transfer, application invocation

The Race to Exascale

▪ The exaflop computer: a quintillion (1018)
floating point operations per second

▪ Expected to have massive (billion-way)  
concurrency

▪ Significant issues must be overcome
– Fault-tolerance
– I/O
– Heat and power efficiency
– Programmability!

▪ Can scripting systems like Tcl help?
– I think so!

6

#1 Tianhe-2: 33 PF, 18 MW (China)

#2 Titan: 20 PF, 8 MW (Oak Ridge)

#5 Mira: 8.5 PF, 4 MW (Argonne)

= 2.5 MW

TOP500 leaderboard

Outline

▪ Introduction to Swift/T
– Introduction to MPI
– Introduction to ADLB
– Introduction to Turbine, the Swift/T runtime

▪ Use of Tcl in Swift/T

▪ Interesting Swift/T features

▪ Applications

▪ Performance

7

SWIFT/T OVERVIEW
High-performance dataflow for compositional programming

8

Swift programming model:  
all progress driven by concurrent dataflow

▪ A() and B() implemented in native code

▪ A() and B()run in concurrently in different processes

▪ r is computed when they are both done

▪ This parallelism is automatic
▪ Works recursively throughout the program’s call graph

9

(int r) myproc (int i, int j)
{
 int x = A(i);
 int y = B(j);
 r = x + y;
}

Swift programming model

▪ Data types
int i = 4;
int A[];
string s = "hello world";

▪ Mapped data types
file image<"snapshot.jpg">;

▪ Structured data
image A[]<array_mapper…>;
type protein {
 file pdb;
 file docking_pocket;
}
bag<blob>[] B;

10

▪ Conventional expressions
if (x == 3) {
 y = x+2;
 s = sprintf("y: %i", y);
}

▪ Parallel loops
foreach f,i in A {
 B[i] = convert(A[i]);
}

▪ Implicit data flow
merge(analyze(B[0], B[1]),
 analyze(B[2], B[3]));

Swift: A language for distributed parallel scripting, J. Parallel Computing, 2011

Swift/T: Swift for high-performance computing

11

Had this:
(Swift/K)

For extreme scale,  
we need this:  

(Swift/T)

• Wozniak et al. Swift/T: Scalable data flow programming for
distributed-memory task-parallel applications . Proc. CCGrid,
2013.

Submit host (login node, laptop, Linux server)

Data server

Swift/K runs parallel scripts on a broad range  
of parallel computing resources

Original implementation:  
Swift/K (c. 2006) - scripting for distributed computing  
Still maintained and supported

Clouds:
Amazon EC2,

XSEDE Wispy, …

Application
Programs

1018

1015
Swift
script

Pervasive parallel data flow

• Simple dataflow DAG on scalars
• Does not capture generality of scientific computing and analysis

ensembles:
• Optimization-directed iterations
• Conditional execution
• Reductions

MPI: The Message Passing Interface

▪ Programming model used on large supercomputers
▪ Can run on many networks, including sockets, or

shared memory
▪ Standard API for C and Fortran, other languages

have working implementations
▪ Contains communication calls for

– Point-to-point (send/recv)
– Collectives (broadcast, reduce, etc.)

▪ Interesting concepts
– Communicators: collections of  

communicating processing and  
a context

– Data types: Language-independent  
 data marshaling scheme

14

ADLB: Asynchronous Dynamic Load Balancer

▪ An MPI library for master-worker  
workloads in C

▪ Uses a variable-size, scalable  
network of servers

▪ Servers implement  
work-stealing

▪ The work unit is a byte array
▪ Optional work priorities, targets,

types

▪ For Swift/T, we added:
– Server-stored data
– Data-dependent execution
– Tcl bindings!

15

Servers

Workers

• Lusk et al. More scalability, less pain: A
simple programming model and its
implementation for extreme computing.
SciDAC Review 17, 2010.

Swift/T Compiler and Runtime

▪ STC translates high-level
Swift  
expressions into low-level  
Turbine operations:

16

– Create/Store/Retrieve typed data
– Manage arrays
– Manage data-dependent tasks

• Wozniak et al. Large-scale application composition via distributed-memory  
data flow processing. Proc. CCGrid 2013.

• Armstrong et al. Compiler techniques for massively scalable implicit  
task parallelism. Proc. SC 2014.

Turbine Code is Tcl

▪ Why Tcl?
– Needed a simple, textual compiler target for STC
– Needed to be able to post code into ADLB
– Needed to be able to easily call C (ADLB and user code)

▪ Turbine
– Includes the Tcl bindings for ADLB
– Builtins to implement Swift primitives in Tcl  

(arithmetic, string operations, etc.)

▪ Swift/T Compiler (STC)
– A Java program based on ANTLR
– Generates Tcl (contains a Tcl abstract syntax tree API in Java)
– Performs variable usage analysis and optimization

17

Distributed Data-dependent Execution

▪ STC can generate arbitrary Tcl but Swift requires dataflow processing

▪ Implemented this requirement in the Turbine rule statement

▪ Rule syntax:
rule [list inputs] "action string" options…

▪ All Swift data is registered with the ADLB distributed data store
▪ Rules post data-dependent tasks in ADLB

▪ When all inputs are stored, the action string is released
▪ The action string is a Tcl fragment

18

Translation from Swift to Turbine

▪ Swift:

▪ Turbine/Tcl:

19

x1 = 3;
s = "value: ";
x2 = 2;
int x3;
printf("%s%i", s, x3);
x3 = x1+x2;

literal x1 integer 3
literal s string "value: "
literal x2 integer 2
allocate x3 integer
rule [list $x3] "puts \[retrieve $s\]\[retrieve $x3\]"
rule [list $x1 $x2] \
 "store_integer $x3 \[expr \[retrieve $x1\]+\[retrieve $x2\]\]"

Tcl variables contain TDs (addresses)

STC

Interacting with the Tcl Layer

▪ Can easily specify a fragment of Tcl to access:

▪ Automatically loads the given Tcl package/version (turbine 0.0)

▪ STC substitutes Tcl variables with the <<·>> syntax

▪ Typically want to simply reference some greater Tcl or native code
library

20

 (int c) add(int a, int b) "turbine" "0.0" [
 "set <<c>> [expr <<a>> + <>]"
];

A[3] = g(A[2]);

Example distributed execution

▪ Code

▪ Evaluate dataflow operations 

▪ Workers: execute tasks

21

A[2] = f(getenv(“N”));

• Perform getenv()
• Submit f

• Process f
• Store A[2]

• Subscribe to A[2]
• Submit g

• Process g
• Store A[3]

Task put Task put

No
tif

ica
tio

n
• Wozniak et al. Turbine: A distributed-memory dataflow engine for high

performance many-task applications. Fundamenta Informaticae 128(3),
2013

Task get Task get

Examples!

22

Extreme scalability for small tasks

23

• 1.5 billion tasks/s on 512K cores of Blue Waters, so far

• Armstrong et al. Compiler techniques for massively scalable
implicit task parallelism. Proc. SC 2014.

Characteristics of very large Swift programs

24

▪ The goal is to support billion-way
concurrency: O(109)

▪ Swift script logic will control
trillions of variables and data
dependent tasks

▪ Need to distribute Swift logic
processing over the HPC compute
system

int X = 100, Y = 100;
int A[][];
int B[];
foreach x in [0:X-1] {
 foreach y in [0:Y-1] {
 if (check(x, y)) {
 A[x][y] = g(f(x), f(y));
 } else {
 A[x][y] = 0;
 }
 }
 B[x] = sum(A[x]);
}

Swift/T: Fully parallel evaluation
of complex scripts

25

int X = 100, Y = 100;
int A[][];
int B[];
foreach x in [0:X-1] {
 foreach y in [0:Y-1] {
 if (check(x, y)) {
 A[x][y] = g(f(x), f(y));
 } else {
 A[x][y] = 0;
 }
 }
 B[x] = sum(A[x]);
}

• Wozniak et al. Large-scale application composition via distributed-memory  
data flow processing. Proc. CCGrid 2013.

output(p(i));

output(p(i));

x = g();
if (x > 0) {
 n = f(x);
 foreach i in [0:n-1] {
 output(p(i));
 }}

Swift code in dataflow

▪ Dataflow definitions create nodes in the dataflow graph
▪ Dataflow assignments create edges
▪ In typical (DAG) workflow languages, this forms a static graph
▪ In Swift, the graph can grow dynamically – code fragments are

evaluated (conditionally) as a result of dataflow
▪ Data dependent-tasks are managed by ADLB

26

x = g();

x

n

foreach i … {
 output(p(i));

if (x > 0) {  
 n = f(x); …

Hierarchical programming model

27

▪ Including MPI libraries

Support calls to embedded interpreters

28

We have plugins
for Python, R,
Tcl, Julia, and
QtScript• Wozniak et al. Toward computational experiment management
via multi-language applications. Proc. ASCR SWP4XS, 2014.

• Wozniak et al. Interlanguage parallel scripting for distributed-
memory scientific computing. Proc. CLUSTER 2015.

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

▪ Write site-independent scripts in Swift language
▪ Execute on scalable runtime: Turbine
▪ Automatic parallelization and data movement
▪ Run native code or script fragments as  

application tasks
▪ Rapidly subdivide large partitions for  

MPI libraries using MPI 3

29

Swift
control
process

Swift
control
process

Swift/T
control
process

Swift worker
process

C C+
+

Fortr
an

C C+
+

Fortr
an

C C++ Fortran

MPI

Swift/T worker

64K cores of Blue
Waters
2 billion Python tasks  
14 million Pythons/s

Swift/T: Enabling high-performance scripting

NOVEL FEATURES: RUNTIME
Swift/T features for task control

30

Task priorities

31

▪ User-written annotation on function call

▪ Priorities are best-effort and are relative to tasks on a given ADLB
server

▪ Could be used to:
– Promote tasks that release lots of other dependent work
– Compute more important work early (before allocation expires!)
– Deal with trailing tasks (next slide)

foreach i in 0:N-1 {
 @prio=i f(i);  
}

Prioritize long-running tasks

▪ Variable-sized tasks produce trailing tasks: 
addressed by exposing ADLB task priorities at language level

Stateful external interpreters

▪ Desire to use high-level, 3rd party algorithms in Python, R to
orchestrate Swift workflows, e.g.:
– Python DEAP for evolutionary algorithms
– R language GA package

▪ Typical control pattern:
– GA minimizes the cost function
– You pass the cost function to the library and wait

▪ We want Swift to obtain the parameters from the library
– We launch a stateful interpreter on a thread
– The "cost function" is a dummy that returns the  

parameters to Swift over IPC
– Swift passes the real cost function results back  

to the library over IPC

▪ Achieve high productivity and high scalability
– Library is not modified – unaware of framework!
– Application logic extensions in high-level script

Load balancing

Swift worker

Python/R

IPC GA

MPI Process

Tasks Results

MPI

Unnecessary details: Epidemics ensembles

34

Epidemic simulators

• Wozniak et al. Many Resident Task Computing in Support of
Dynamic Ensemble Computations. Proc. MTAGS 2015.

Ebola spread modeling

▪ Epidemic analysis- combining agent-based models with observation
▪ Received emergency funding late last year
▪ Combines Python-based evolutionary algorithm with high-

performance agent-based epidemic modeling code
▪ Want to compare simulations with observations in real-time as

disease spreads through a population

35

Application  
Location  
annotations

Features for Big Data analysis

36

• Location-aware
scheduling 
User and runtime coordinate data/
task locations

• Collective I/O 
User and runtime coordinate data/
task locations

Runtime 
Hard/soft locations

Distributed
data

Application  
I/O hook

Runtime 
MPI-IO transfers

Distributed
data

Parallel FS

• F. Duro et al. Exploiting data
locality in Swift/T workflows using
Hercules .  
Proc. NESUS Workshop, 2014.

• Wozniak et al. Big data staging with
MPI-IO for interactive X-ray science.
Proc. Big Data Computing, 2014.

Cache FS

Abstract, extensible MapReduce in Swift

main {
 file d[];
 int N = string2int(argv("N"));
 // Map phase
 foreach i in [0:N-1] {
 file a = find_file(i);
 d[i] = map_function(a);
 }
 // Reduce phase
 file final <"final.data"> = merge(d, 0, tasks-1);
}

(file o) merge(file d[], int start, int stop) {
 if (stop-start == 1) {
 // Base case: merge pair
 o = merge_pair(d[start], d[stop]);
 } else {
 // Merge pair of recursive calls
 n = stop-start;
 s = n % 2;
 o = merge_pair(merge(d, start, start+s),
 merge(d, start+s+1, stop));
 }}

37

• User needs to implement  
map_function() and merge()

• These may be implemented  
in native code, Python, etc.

• Could add annotations
• Could add additional custom  

application logic

Hercules

▪ Want to run arbitrary workflows over distributed filesystems that expose
data locations: Hercules is based on Memcached
– Data analytics, post-processing
– Exceed generality MapReduce: without losing data optimizations 

▪ Can optionally send a Swift task to a particular location with simple
syntax:  

▪ Can obtain ranks from hostnames:  
 int rank = hostmapOneWorkerRank("my.host.edu");

▪ Can now specify location constraints:  
 location L = location(rank, HARD|SOFT, RANK|NODE);

▪ Much more to be done here!

38

foreach i in 0:N-1 {
 location L = locationFromRank(i);
 @location=L f(i);  
}

GeMTC: GPU-enabled Many-Task Computing

Goals:
1) MTC support 2) Programmability
3) Efficiency 4) MPMD on SIMD
5) Increase concurrency to warp level

Approach:
Design & implement GeMTC
middleware:
1) Manages GPU 2) Spread host/
device
3) Workflow system integration (Swift/
T)

Motivation: Support for MTC on all accelerators!

LOGGING AND DEBUGGING
What just happened?

40

Logging and debugging in Swift

▪ Traditionally, Swift programs are debugged through the log or the
TUI (text user interface)

▪ Logs were produced using normal methods, containing:
– Variable names and values as set with respect to thread
– Calls to Swift functions
– Calls to application code

▪ A restart log could be produced to restart a large Swift run after
certain fault conditions

▪ Methods require single Swift site: do not scale to larger runs

41

Logging in MPI

▪ The Message Passing Environment (MPE)
▪ Common approach to logging MPI programs
▪ Can log MPI calls or application events – can store arbitrary data
▪ Can visualize log with Jumpshot

▪ Partial logs are stored at the site of  
each process

– Written as necessary to shared  
file system

• in large blocks
• in parallel

– Results are merged into a big log file  
(CLOG, SLOG)

▪ Work has been done optimize the  
file format for various queries

42

Logging in Swift & MPI
▪ Now, combine it together
▪ Allows user to track down erroneous Swift program logic

▪ Use MPE to log data, task operations, calls to native code
▪ Use MPE metadata to annotate events for later queries

▪ MPE cannot be used to debug native MPI programs that abort
– On program abort, the MPE log is not flushed from the process-local cache
– Cannot reconstruct final fatal events

▪ MPE can be used to debug Swift application programs that abort
– We finalize MPE before aborting Swift
– (Does not help much when developing Swift itself)
– But primary use case is non-fatal arithmetic/logic errors

43

• Wozniak et al. A model for tracing and debugging large-scale task-parallel
programs with MPE. Proc LASH-C, 2013.

Visualization of Swift/T execution
▪ User writes and runs Swift script
▪ Notices that native application code is called with nonsensical inputs
▪ Turns on MPE logging – visualizes with MPE

– PIPS task computation Store variable Notification (via control task)  
Blue: Get next task Retrieve variable  
Server process (handling of control task is highlighted in yellow)

▪ Color cluster is task transition:
▪ Simpler than visualizing messaging pattern (which is not the user’s code!)
▪ Represents Von Neumann computing model – load, compute, store

44

Time
Jumpshot view of PIPS application run

Pr
oc

es
s

ra
nk

Debugging Swift/T execution

▪ Starting from GUI, user can identify erroneous task
– Uses time and rank coordinates from task metadata

▪ Can identify variables used as task inputs

▪ Can trace provenance of those variables back in reverse dataflow

45

erroneous task

Aha! Found script defect. ← ← ← (searching backwards)

APPLICATIONS
Molecular dynamics simulation, X-ray science data processing

46

Can we build a Makefile in Swift?

▪ User wants to test a variety of compiler optimizations
▪ Compile set of codes under wide range of possible configurations
▪ Run each compiled code to obtain performance numbers
▪ Run this at large scale on a supercomputer (Cray XE6)

▪ In Make you say:  
CFLAGS = ...  
f.o : f.c  
 gcc $(CFLAGS) f.c -o f.o  
 
In Swift you say:  
 
string cflags[] = ...;  
f_o = gcc(f_c, cflags);  

47

CHEW example code

Apps  
app (object_file o) gcc(c_file c, string cflags[]) {
// Example:
// gcc -c -O2 -o f.o f.c
 "gcc" "-c" cflags "-o" o c;
}

app (x_file x) ld(object_file o[], string ldflags[]) {
// Example:
// gcc -o f.x f1.o f2.o ...
 "gcc" ldflags "-o" x o;
}

app (output_file o) run(x_file x) {
 "sh" "-c" x @stdout=o;
}

app (timing_file t) extract(output_file o) {
 "tail" "-1" o "|" "cut" "-f" "2" "-d" " " @stdout=t;
}

Swift code
 string program_name = "programs/program1.c";
 c_file c = input(program_name);
 // For each
 foreach O_level in [0:3] {
 make file names…
 // Construct compiler flags
 string O_flag = sprintf("-O%i", O_level);
 string cflags[] = ["-fPIC", O_flag];
 object_file o<my_object> = gcc(c, cflags);
 object_file objects[] = [o];
 string ldflags[] = [];
 // Link the program
 x_file x<my_executable> = ld(objects, ldflags);
 // Run the program
 output_file out<my_output> = run(x);
 // Extract the run time from the program output
 timing_file t<my_time> = extract(out);

48

Swift integration into NAMD and VMD
www.ks.uiuc.edu/Research/swift

See Dalke and Schulten, Using Tcl for  
Molecular Visualization and Analysis,
1997.

NAMD Replica Exchange Limitations

▪ One-to-one replicas to Charm++ partitions:
– Available hardware must match science.

– Batch job size must match science.

– Replica count fixed at job startup.

– No hiding of inter-replica communication latency.

– No hiding of replica performance divergence.

▪ Can a different  
programming  
model help?

Benefits of using Swift within NAMD / VMD

Work by Jim Phillips and John Stone of UIUC NAMD Group (Schulten Lab) :

• NAMD 2.10 and VMD 1.9.2 can run Swift dataflow
programs using functions from their embedded Tcl
scripting language.

• NAMD and VMD users are already familiar with Tcl, and
Tcl allows access to the two apps’ complete
functionality.

• Swift has been used to demonstrate n:m multiplexing of
n replicas across a smaller arbitrary number m of NAMD
processes

• This is very complex to do with normal NAMD scripting
that can be expressed naturally in under 100 lines of
Swift/T code.

NAMD/VMD and Swift/T

Typical Swift/T Structure

MD1.cMD1.c MD2.cppMD2.cpp viz.cppviz.cpp
SWIG-generated Tcl wrappersSWIG-generated Tcl wrappers

Swift/T runtimeSwift/T runtime
MPI

Top-level dataflow script
exchange.swift

Top-level dataflow script
exchange.swift

NAMD/VMD Structure

Swift/T runtimeSwift/T runtime

NAMD (C++)NAMD (C++)

Tcl Evaluation (uplevel-eval)Tcl Evaluation (uplevel-eval)

Top-level dataflow script
exchange.swift

Top-level dataflow script
exchange.swift

Future work: Extreme scale ensembles
▪ Enhance Swift for exascale experiment/simulate/analyze

ensembles
– Deploy stateful, varying sized jobs
– Outermost, experiment-level coordination via dataflow
– Plug in experiments and human-in-the-loop models (dataflow filters)
– JointLab collaboration: Connecting bulk task-task data transfer with

Swift

53

Big job 1: Type
A Big job 2: Type A Big job 3: Type B

Small job
1: Type A

Small job
2: Type A

Small job
3: Type B

Small job
4: Type B

Small job
4: Type C

Small job
5: Type D

APS

Technology transfer – Parallel.Works

An incubation venture of the University of Chicago’s CIE: Chicago Innovation Exchange  
http://cie.uchicago.edu

Technology transfer – Parallel.Works

Technology transfer – Parallel.Works

Summary
▪ Swift: High-level scripting for outermost programming constructs
▪ Heavily based on Tcl!
▪ Described novel features for task control and big data computing

on clusters and supercomputers
▪ Thanks to the Swift team: Mike Wilde, Ketan Maheshwari, Tim

Armstrong, David Kelly, Yadu Nand, Mihael Hategan, Scott Krieder,
Ioan Raicu,  
Dan Katz, Ian Foster

▪ Thanks to the Tcl organizers

▪ Questions?

57

THINK RUN

COLLECTIMPROVE

