
Embeddable Mac OS X
CoreFoundation Notifier

EuroTcl 09
5 June 2009

Daniel A. Steffen
das@users.sf.net

mailto:das@users.sourceforge.net?subject=EuroTcl%2009%20Presentation
mailto:das@users.sourceforge.net?subject=EuroTcl%2009%20Presentation

Outline

• Tcl Notifier Recap

• CoreFoundation RunLoops

• Embeddable CoreFoundation Notifier

• Embedded Notifier Setup

• Caveats

• Demo

Tcl Notifier Recap

• Core of Tcl event loop

■ Wait for OS events: file readable, socket activity, timer...

■ Via Tcl_DoOneEvent() → Tcl_WaitForEvent()

• Unthreaded UNIX notifier: select()

• Threaded UNIX notifier: pthread_cond_timedwait()

■ Common notifier thread waiting in select()

• Timeouts passed to wait API ensure timers are serviced

Tcl Notifier on Mac OS X

• UNIX notifier ok if only POSIX APIs are used

• Many OS X facilities rely on platform-specific event loop API

■ e.g. interact with WindowServer, Bonjour, Mach Ports, etc

• Need notifier integrated with CoreFoundation RunLoop

■ CF notifier available since 8.4.10/8.5a3 (May 2005)

■ only for event loop driven via Tcl_DoOneEvent()

■ i.e. TkAqua, Bonjour extension, but not embeddable

CoreFoundation RunLoops

• Common event loop mechanism all higher APIs build on

■ based on Mach port IPC internally

• One CFRunLoop per thread

• API to run (until given timeout) and stop current runloop

■ runloops can run recursively, can run in custom modes

• Runloop monitors sources, timers and observers

■ when triggered, these execute specified callback

CoreFoundation RunLoops

• Runloop sources monitor event sources

■ e.g. Mach ports, sockets, custom events

■ sources can be signaled (and runloops woken up) from
other threads

• Runloop timers trigger at specified interval (once/repeatedly)

• Runloop observers trigger each time specific stages of
runloop execution are reached

■ e.g. before sources, before waiting, after waiting, etc

CoreFoundation Notifier

• Pre-8.5.7 (non-embeddable):

■ always uses notifier thread to run select()

■ uses pthread API directly to work in unthreaded Tcl

■ Tcl-specific runloop source in each thread

■ Notifier thread signals source to wake up waiting thread

■ Tcl_WaitForEvent()blocks in CFRunLoopRun()
until a source is triggered or timeout reached

■ Tcl events are enqueued from Tcl_WaitForEvent()
once CFRunLoopRun() returns

Emeddable CoreFoundation
Notifier

• Tcl events and timers need to be enqueued & serviced
when event loop is not being run via Tcl_DoOneEvent()

■ Tcl runloop observer and runloop timer in each thread

■ Timer wakes up runloop so tcl timers can trigger

■ Observer services tcl events before runloop wait state

■ Tcl events are enqueued from tcl runloop source callback

■ Tcl_WaitForEvent()essentially reduced to a call to
CFRunLoopRun()

Emeddable CoreFoundation
Notifier

• Finer grained locking: per-thread lock on thread-specific data
accessed from both thread and notifier thread

■ replaces global lock for all notifier structures

■ uses OS X spinlock API for reduced overhead over
pthread mutexes

• Runloop observer places/removes thread from global
waiting list as runloop is entered/exited

■ wakes up notifier thread via trigger pipe, causing
select() masks to be recomputed

Emeddable CoreFoundation
Notifier

• Custom runloop mode for nested invocations of tcl event
loop (avoid loosing wakeups of non-tcl sources)

• Notifier thread created lazily on first Tcl_WaitForEvent

• Tcl_Sleep() based on CFRunLoopRun() to allow non-
tcl events to be processed during sleep

• TclUnixWaitForFile() currently still select() based

■ can block embedder event processing

• New internal stubs API to add runloop mode to the set of
modes where tcl notifier processes events

Tcl_SetServiceMode(TCL_SERVICE_ALL);

Emedded Notifier Setup

• Call during Tcl initialization

■ sets up runloop timer and enables tcl event servicing
from runloop observer

• Use standard high-level-API facilities to run CFRunLoop

■ e.g. -[NSApplication run]

• Without this, CF notifier behaves as pre-8.5.7

■ e.g. tclsh continues to use that mode of operation

Caveats

• Watch for nested tcl event loops (e.g. [vwait])

■ block event processing in embedder

■ avoid long [vwait] if possible (e.g. use coroutines)

■ if necessary, handle by adding a runloop observer that
processes embedder events from tcl event loop

■ difficult to get right, e.g. Cocoa may not expect this

■ need to ensure Tcl is not re-entered from embedder

• Nested embedder event loops work fine

■ may need to add tracking runloop modes to tcl notifier

Caveats

• fork() not immediately followed by execve()

■ e.g. via TclX or Expect

• Not supported by threaded UNIX notifier

■ CF notifier always uses notifier thread

■ atfork() handlers in place to reset state after fork()

■ lazy notifier thread re-creation in child

• BUT in recent Mac OS X releases, CoreFoundation actively
guards against its use after fork() and calls abort()

■ use unthreaded, non-corefoundation notifier...

Demo

Thanks

http://categorifiedcoder.info/

http://categorifiedcoder.info
http://categorifiedcoder.info

