Embeddable Mac OS X
CorefFoundation Notifier

EuroTcl 09
5 June 2009

Daniel A. Steffen

das@users.sf.net

mailto:das@users.sourceforge.net?subject=EuroTcl%2009%20Presentation
mailto:das@users.sourceforge.net?subject=EuroTcl%2009%20Presentation

Qutline

* Tcl Notifier Recap

e CoreFoundation RunlLoops

®* Embeddable CoreFoundation Notifier
* Embedded Notifier Setup

e Caveats

® Demo

Tcl Notifier Recap

Core of Tcl event loop

= Wit for OS events: file readable, socket activity, timer...
= Via Tcl DoOneEvent() — Tcl WaitForEvent()
Unthreaded UNIX notifier: select ()

Threaded UNIX notifier: pthread cond timedwait()
= Common notifier thread waiting in select ()

Timeouts passed to wait APl ensure timers are serviced

Tcl Notifier on Mac OS X

o UNIX notifier ok if only POSIX APls are used
e Many OS X facilities rely on platform-specific event loop API
= e.g.interact with WindowServer, Bonjour, Mach Ports, etc
* Need notifier integrated with CoreFoundation RunLoop
= CF notifier available since 8.4.10/8.5a3 (May 2005)
= only for event loop driven via Tc1 DoOneEvent ()

= i.e.TkAqua, Bonjour extension, but not embeddable

CoreFoundation RunLoops

Common event loop mechanism all higher APIs build on
= based on Mach port IPC internally

One CFRunlLoop per thread

API to run (until given timeout) and stop current runloop
= runloops can run recursively, can run in custom modes
Runloop monitors sources, timers and observers

= when triggered, these execute specified callback

CoreFoundation RunLoops

e Runloop sources monitor event sources
= e.g. Mach ports, sockets, custom events

= sources can be signaled (and runloops woken up) from
other threads

e Runloop timers trigger at specified interval (once/repeatedly)

® Runloop observers trigger each time specific stages of
runloop execution are reached

= e.g. before sources, before waiting, after waiting, etc

CoreFoundation Notifier

® Pre-8.5.7 (non-embeddable):
= always uses notifier thread to run select ()
= uses pthread API directly to work in unthreaded Tc|
= Tcl-specific runloop source in each thread
= Notifier thread signals source to wake up waiting thread

= Tcl WaitForEvent ()blocks in CFRunLoopRun/()
until a source is triggered or timeout reached

= Tcl events are enqueued from Tcl WaitForEvent ()
once CFRunLoopRun () returns

Emeddable CoreFoundation
Notifier

® Tcl events and timers need to be enqueued & serviced
when event loop is not being run via Tcl DoOneEvent ()

= Tcl runloop observer and runloop timer in each thread

= Timer wakes up runloop so tcl timers can trigger

= Observer services tcl events before runloop wait state

= Tcl events are enqueued from tcl runloop source callback

» Tcl WaitForEvent ()essentially reduced to a call to
CFRunLoopRun()

Emeddable CoreFoundation
Notifier

® Finer grained locking: per-thread lock on thread-specific data
accessed from both thread and notifier thread

= replaces global lock for all notifier structures

= uses OS X spinlock API for reduced overhead over
pthread mutexes

® Runloop observer places/removes thread from global
waiting list as runloop is entered/exited

= wakes up notifier thread via trigger pipe, causing
select () masks to be recomputed

Emeddable CoreFoundation
Notifier

Custom runloop mode for nested invocations of tcl event
loop (avoid loosing wakeups of non-tcl sources)

Notifier thread created lazily on first Tcl WaitForEvent

Tcl Sleep() based on CFRunLoopRun() to allow non-
tcl events to be processed during sleep

TclUnixWaitForFile() currently still select () based
= can block embedder event processing

New internal stubs APl to add runloop mode to the set of
modes where tcl notifier processes events

Emedded Notifier Setup

Tcl SetServiceMode(TCL_ SERVICE ALL);

e Call during Tcl initialization

= sets up runloop timer and enables tcl event servicing
from runloop observer

e Use standard high-level-API facilities to run CFRunLoop
» e.g. —[NSApplication run]
* Without this, CF notifier behaves as pre-8.5.7

= e.g. tclsh continues to use that mode of operation

Caveats

® Watch for nested tcl event loops (e.g. [vwait])
= block event processing in embedder
= avoid long [vwait] if possible (e.g. use coroutines)

= if necessary, handle by adding a runloop observer that
processes embedder events from tcl event loop

= difficult to get right, e.g. Cocoa may not expect this
= need to ensure Tcl is not re-entered from embedder
* Nested embedder event loops work fine

= may need to add tracking runloop modes to tcl notifier

Caveats

e fork() not immediately followed by execve ()
= e.g.via TcIX or Expect
* Not supported by threaded UNIX notifier
= CF notifier always uses notifier thread
= atfork() handlers in place to reset state after fork()
= lazy notifier thread re-creation in child

e BUT in recent Mac OS X releases, CoreFoundation actively
guards against its use after fork () and calls abort ()

= use unthreaded, non-corefoundation notifier...

Demo

Thanks

http://categorifiedcoder.info/

http://categorifiedcoder.info
http://categorifiedcoder.info

