
An ODE solver for Tcl:
old Fortran in a new interface

Kevin B. Kenny
Computational Biology Laboratory, GE Global Research Center, Niskayuna, NY

kennykb@research.ge.com
Abstract

LSODAR is a Fortran subroutine for integration of ordinary differential equations that
has been actively maintained for over twenty years and gives high-quality results for a
variety of problems. This paper demonstrates how such a “dusty deck” can be adapted to
interface cleanly to a modern high-level language like Tcl, be made safe to use in the
presence of threads and recursion, and take advantage of the symbolic computation
capabilities available to Tcl. The result is an ODE solver for Tcl that is production-ready,
at the expenditure of considerably less effort than it would take to develop comparable
capabilities targeted specifically at Tcl. It presents a few tricks that should be handy in
connecting other legacy Fortran applications to Tcl.

1. Introduction
Fortran has for decades been the first choice of language for scientific programming.
Because of this, a great many Fortran codes are available for solving numeric problems,
such as statistical analysis, root finding, and the integration of differential equations.
Many of the best are available free of charge, having been developed by US Government
researchers at taxpayer expense. These “treasures of the national labs” deserve to be more
widely known outside the Fortran community, but the tremendous difference in style
between Fortran and more modern languages inhibits their broader acceptance. This
paper describes how one such code, LSODAR (Livermore Solver for Ordinary
Differential equations with Automatic method selection and Root-finding) (4) was
adapted to use in Tcl.

Among the issues that have to be addressed for this code are adapting the long parameter
lists of the Fortran calls to something more Tcl-friendly, managing dynamically allocated
memory, dealing with Fortran callbacks (callbacks to EXTERNAL functions) at the Tcl
level, and dealing with issues like recursion and multithreading.

The combination is arguably greater than the sum of the parts, because Tcl’s ability to
perform symbolic calculations can be exploited in the combined code. The combined
Fortran-Tcl system has the ability to use Tcl’s symbolic capabilities to perform symbolic
differentiation to exploit backward-differencing formulas.

2. Background
The motivation for this work was the observation that a number of the author’s
colleagues were performing numerical simulations of ordinary differential equations
(ODE’s) in the context of cell biology(1), pharmacokinetics(5), and other biological
systems. The systems tended to divide into two groups. The first group was accepted by
the biologist users, but generally was specialized for a single narrow problem, and often
had tremendous issues of numerical stability (because of the use of ad hoc solvers for the
ODE’s). The second took care with the numerical analysis, often by using well-tested
third party codes, and often offered considerably more generality, but tended to be

Fortran programs usable only by their authors. Clearly, some sort of middle ground was
needed.

At the same time, a number of others were working on developing the interface between
Tcl and Fortran. Having already realized Tcl’s utility for ad hoc scientific
calculations(8), Arjen Markus had developed a rudimentary interface for Fortran
programs to evaluate Tcl scripts(7). Working together with Jean-Claude Wippler and
Steve Landers, he also explored a “proof of concept” of an automatic interface generator
whereby Fortran subprograms could be integrated into Tcl(6). The idea of integrating Tcl
and Fortran was certainly in the air.

These two developments combined to motivate the development of a Tcl interface to a
general-purpose Fortran ODE solver, LSODAR (Livermore Solver for Ordinary
Differential equations [Automatic method selection with Rootfinding])(4). LSODAR was
chosen because it is well qualified (it has been well maintained for twenty years!), and
because it requires fairly little “care and feeding” in the area of solution method selection
(Many other libraries require the user to recognize the realms in which their ODE’s are
stiff and non-stiff and choose methods accordingly, risking horrible numerical
instabilities if the wrong methods are chosen.) Moreover, LSODAR offers a root-finding
capability, which was essential to stop the simulation at bifurcation points in the mixed
strategy (ODE’s plus discrete event simulation) that some of the author’s colleagues were
pursuing.

3. The Tcl interface to LSODAR

The first approach to connecting LSODAR with Tcl was to do a fairly straightforward
translation of the application programming interface. It became obvious fairly quickly,
however, that this approach was not going to succeed – or at the very least, was not going
to produce a calling sequence that was anywhere near to idiomatic Tcl. If we examine
Figure 1, it becomes quickly obvious why this is.

 SUBROUTINE DLSODAR (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, JT,
 2 G, NG, JROOT)
 EXTERNAL F, JAC, G
 INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, JT,
 1 NG, JROOT
 DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK
 DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW),

1 JROOT(NG)

Figure 1. Calling sequence for LSODAR.

First, there is a long list of parameters – twenty or so. It is difficult to imagine any Tcl
command accepting that many positional parameters. Moreover, a number of the
parameters (NEQ, LRW, LIW, and NG) simply serve to give the lengths of arrays. In
addition, only the arrays ATOL, RTOL,Y and JROOT are actually used by the caller,

either before or after the call1. RWORK, IWORK and G are simply working storage
provided by the caller because Fortran 77 has no dynamic memory allocation.

A more awkward problem is that three of the parameters are EXTERNAL – which, in
Fortran, means that they are pointers to Fortran subprograms that will be invoked by the
called routine. These callbacks need to be adapted so that they can be delivered into Tcl.
Clearly, at least a small development effort was needed to make a module that would
present a Tcl-friendly interface and support calls back and forth between Tcl and Fortran.

A. Choice of compiler
Since Tcl’s object level API’s are all in C, and the interfaces between C and Fortran are
not terribly portable among compilers, the decision was made to have all the code in C.
For this reason, the first thing done was to take all the Fortran code needed for LSODAR
and pass it through ‘f2c’ – a Fortran compiler that has C code as output(3). This C code,
plus the C source code for four builtin functions from the associated runtime library,
provided a code base that was independent of the Fortran compiler on any target system;
it is simply included in the source code of the distributed module. It was tested on one
Linux system by comparing the output of the LSODAR example programs compiled with
‘f2c’ and the output from the Fortran versions compiled with GNU ‘g77’(2); output was
identical.

B. Designing a Tcl interface
Rather than having a large number of positional parameters, the Tcl interface uses
keyword-value syntax, with sensibly chosen defaults. Figure 2 shows a trivial example,
where a simple harmonic oscillator is modeled for an eighth-cycle of its operation.

 set solver [odesolv::odesolv -atol 1e-6 -rtol 1e-6 -indvar theta \
 -- s {$c} c {-$s}]
 set s 0.0
 set c 1.0
 set theta 0.0
 set troubles [$solver run [expr {atan(1.0)}]]
 puts [list $theta $c $s]
 rename $solver {}

Figure 2. Trivial example of use of the solver

The program in Figure 2 is read: “Create an ODE solver instance, and store it in variable
‘solver’. The independent variable for the system of ODE’s is ϑ , and the results are
expected to be computed to either six decimal places (an absolute tolerance of 610−) or to
six significant figures (a relative tolerance of 610−). The system to be solved is:

s
dt

dc

c
dt

ds

−=

=
.

Initial values are 1,0,0 === csϑ , and results are requested for 4/πϑ = .”

1 Not quite true – the IWORK and RWORK arrays also contain further optional parameters for the call. We
are dealing with a truly Byzantine interface here!

Unsurprisingly, when run, the program prints that at the end, s and c are both within 10-6

of 2 .

Note that the right-hand sides of the system are Tcl expressions: they are actually
evaluated by making Tcl_ExprDoubleObj callbacks back into the interpreter where the
solver instance was created.

C. Connecting Tcl and Fortran
The solver constructor command is fairly straightforward; it simply builds a C data
structure that contains all the parameters (plus sensible defaults for any named parameters
that have been omitted). It then constructs a Tcl command that has this data structure as
its ClientData, and returns the name of the constructed command. The client data
structure also includes pointers to the arrays that the Fortran code uses.

The instance command supports three subcommands, ‘run’, ‘continue’ and ‘status.’ The
‘run’ command starts an integration; the ‘continue’ command continues an integration
already in progress. The ‘status’ command simply returns a dictionary containing a group
of the internal variables that the integrator uses, reporting on things like the integration
method in use, the number of steps taken so far, the size of the last successful step and the
next step to be attempted.

The ‘run’ and ‘continue’ commands invoke the Fortran code in fairly straightforward
fashion. The only thing that is at all unusual is that the callbacks F (which computes the
vector of derivatives, JAC (which computes the Jacobian matrix of F) and G (which
computes the algebraic equations whose roots are to be found) are sent back to C code
within the interface module for further processing. The callback for F, for instance, is
shown in Figure 3.

static void
SolverInstEvalDeriv(
 integer* neq, /* Number of equations, but also
 * instance pointer */
 doublereal* t, /* Value of the independent variable */
 doublereal* y, /* Values of the model variables */
 doublereal* ydot) /* Values of the derivatives */
{
 Solver* solverPtr = (Solver*) neq;
 Tcl_Interp* interp = solverPtr->interp;
 int systemc;
 Tcl_Obj** systemv;
 int i;
 int status = TCL_OK;
 status = CopyOutModelVariables(solverPtr, t, y, &systemc, &systemv);

 /* Evaluate the derivatives */
 for (i = 0; (status == TCL_OK) && (i < *neq); ++i) {
 status = Tcl_ExprDoubleObj(interp, systemv[2 *i + 1], ydot + i);
 }
 if (status != TCL_OK) {
 longjmp(solverPtr->errorExit, 1);
 }
}

Figure 3. Callback that evaluates the derivatives in the solver

In the figure, we see first a horrible kludge. The parameter, ‘neq’, which gives the
number of ODE’s in the system, is also the first member of the client data structure.
Casting it back to the client data lets the evaluator find all the other information it needs.
Believe it or not, this hack is actually documented in the manual for LSODAR.

The ‘CopyOutModelVariables’ call copies the Fortran state vector to Tcl variables in the
current scope. Following this, each of the ‘neq’ derivatives is evaluated in Tcl. If an error
occurs, the solver is aborted (by the expedient of longjmp’ing around the Fortran code,
since LSODAR does not provide for an error exit); otherwise, we return to the Fortran to
continue solving the ODE’s.

4. Troubles that needed fixing
This level of interface served for quite some time, until its user base expanded a little.
The first real trouble came from unexpected recursion. A user had created a Tk GUI that
allowed running multiple systems at once. For some reason, one of the derivatives was
evaluated by an expression that contained an invocation of a Tcl procedure, which in turn
contained an [update]. The event loop was invoked, and dispatched the solver for another
system of equations, and the code crashed.

The problem was that the code generated by ‘f2c’ contained static data in several labeled
COMMON blocks. This static storage had to be made local to a single instance of the
solver. This proved to be surprisingly easy.

First, every file that designated a given labeled COMMON block has a ‘struct’
declaration simultaneously laying it out and defining it, as shown in Figure 4. A #define
giving the name to be used to refer to the block follows immediately.

struct {
 doublereal rowns[209], ccmax, el0, h__, hmin, hmxi, hu, rc, tn, uround;
 integer init, mxstep, mxhnil, nhnil, nslast, nyh, iowns[6], icf, ierpj,
 iersl, jcur, jstart, kflag, l, lyh, lewt, lacor, lsavf, lwm, liwm,
 meth, miter, maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje,
 nqu;
} dls001_;

#define dls001_1 dls001_

Figure 4. Machinery of ‘f2c’ COMMON blocks.

Each subprogram that appears in the file begins with a left brace ‘{‘ on a line by itself.
This is the only place where ‘f2c’ generates such a line.

A simple Tcl script is able to rewrite the declaration to the code shown in Figure 5.

typedef struct {
 doublereal rowns[209], ccmax, el0, h__, hmin, hmxi, hu, rc, tn, uround;
 integer init, mxstep, mxhnil, nhnil, nslast, nyh, iowns[6], icf, ierpj,
 iersl, jcur, jstart, kflag, l, lyh, lewt, lacor, lsavf, lwm, liwm,
 meth, miter, maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje,
 nqu;
} dls001_;
extern Tcl_ThreadDataKey Odesolvdls001_Key;

Figure 5. Rewritten COMMON block interface.

It can then add a codeburst to the head of every procedure to get the current locations of
the blocks, as shown in Figure 6.

 dls001_ *dls001_Ptr = (dls001_ *)
 OdesolvGetCommon("dls001_", &Odesolvdls001_Key, sizeof(dls001_));
 dlsa01_ *dlsa01_Ptr = (dlsa01_ *)
 OdesolvGetCommon("dlsa01_", &Odesolvdlsa01_Key, sizeof(dlsa01_));
 dlsr01_ *dlsr01_Ptr = (dlsr01_ *)
 OdesolvGetCommon("dlsr01_", &Odesolvdlsr01_Key, sizeof(dlsr01_));

Figure 6. Retrieving COMMON block addresses at the head of procedures

(OdesolvGetCommon is a thin layer around Tcl_GetThreadData that calls Tcl_Panic if
the thread data have not been initialized.)

When a solver instance is started via the ‘run’ or ‘continue’ subcommands, it saves any
existing thread data, sets the thread data to point to instance-specific copies of the
COMMON blocks, and enters the Fortran code. In this way, the usage of COMMON
blocks is made safe for multiple instances of the solver, multiple interpreters, and even
multiple threads. Since this change was made, no further mystery crashes have been
observed.

5. Further convenience
One optional parameter to LSODAR is a subroutine that evaluates the Jacobian of the
derivatives (that is, the matrix of second derivatives). Supplying this subroutine can
accelerate convergence, and in the case of very stiff systems of equations, may be
necessary for numerical stability.

Even in Tcl, writing code to evaluate the Jacobian may be onerous. Since most of the
uses of the package so far have involved fairly simple expressions for the derivatives (in
the sense that they do not require command substitutions or arrays, but make do with
Tcl’s built-in functions and scalar variables), it looked feasible to address the problem
with symbolic differentiation.

The ‘odesolv’ package looks for a ‘math::symdiff’ package. If it finds it, and the user has
not supplied a Jacobian matrix, it invokes ‘math::symdiff::jacobian’ to try to develop one
symbolically. If it succeeds, it invokes the Fortran code with the symbolic Jacobian; if it
fails, it invokes the Fortran code with no Jacobian supplied and hopes for the best.

Figure 7 shows an example of computing a symbolic Jacobian for a system of equations.

% foreach row [math::symdiff::jacobian {
 y1 {-0.04 * $y1 + 10000. * $y2 * $y3}
 y2 {0.04 * $y1 - 10000. * $y2 * $y3 - 3.0e-7 * $y2 * $y2}
 y3 {3.0e-7 * $y2 * $y2}
}] {puts $row}
-0.04 {(10000.0 * $y3)} {(10000. * $y2)}
0.04 {-(((10000.0 * $y3) + ((3.0e-7 * $y2) + (3e-007 * $y2))))} {-((10000. *
$y2))}
0.0 {((3.0e-7 * $y2) + (3e-007 * $y2))} 0.0

Figure 7. Calculating derivatives symbolically

The details of the ‘symdiff’ package are described in a companion paper.

6. Results
It is customary in an experience study like this one to present comparison results with
other techniques for achieving the same goals. In this case, it is difficult, because it is
hard to find other attempts at a production-quality ODE solver in Tcl.2 Certainly, any
attempt to compare the ‘odesolv’ package with the ODE solver in Tcllib is comparing
apples with oranges: ‘odesolv’ offers automatic switching between Adams-Moulton and
Gear backward differencing, while Tcllib does only fourth-order Runge-Kutta; ‘odesolv’
has adaptive stepsize control and error estimation, while the Tcllib method lacks these
features; and so on. Nevertheless, it is possible at least to set up benchmark problems
with the two systems.

The first problem, a nonstiff system, was the simple harmonic oscillator of Figure 2.
Integration was carried out starting at 0=ϑ and continuing to 6/13πϑ = , a little more
than one cycle. The second problem was the extremely stiff set of equations

vu
dt

dv
vu

dt

du
19999991998998 −−=+= , carried out for 160 ≤≤ t .

For the stiff solution, LSODAR chose the Adams-Moulton solver for the initial nonstiff
settling time until t = 0.017, and then switched to Gear’s backward difference formula.
Table 1 shows the performance comparison.

Table 1 . Performance comparisons of Tcllib’s integrator and ‘odesolv’.

Problem Nonstiff Stiff
Metric Tcllib Odesolv Tcllib Odesolv
Number of evaluations of derivatives 256 194 32768 472
Number of evaluations of Jacobian N/A 5 N/A 21
Run time (ms) 4.13 0.55 284.00 2.03

The results show that to achieve the same accuracy of results ‘odesolv’ took roughly the
same number of iterations in the nonstiff case, but arrived at the answer nearly an order
of magnitude faster than tcllib’s integrator. Tcllib’s integrator proved unsuitable for the

2 It may be possible to achieve this functionality using Tcl with SCILAB; I have not yet succeeded at this,
but admittedly haven’t tried very hard.

stiff problem. For fewer than 16384 iterations of the Runge-Kutta step, its numeric
stability was so catastrophic that it crashed with a floating-point overflow rather than
returning results. By contrast, ‘odesolv’ was, as expected, quite well behaved, switching
to a backward difference formula and needing two orders of magnitude less time (and
comparably fewer evaluations of the derivatives).

7. Conclusions
This work demonstrates a comprehensive reworking of a legacy Fortran interface into
idiomatic Tcl. It shows how integrating high-quality scientific codes into Tcl can enhance
the capabilities of both. It presents a few interesting techniques for integrating Fortran
and Tcl; in particular, anchoring client data to the address of a Fortran parameter,
replacing COMMON blocks with thread-specific data are both new techniques (as far as
the author is aware). Finally, it demonstrates that combining Tcl’s ability for symbolic
computation and for reconfiguration yields a whole that is greater than the sum of the
parts.

References
1) Beer, A.J., Haubner, R., Goebel, M., Luderschmidt, S., Spilker, M.E., Wester,

H.J., Weber, W.A., Schwaiger, M. “Biodistribution and pharmacokinetics of the α V
β
3-selective tracer 18F-galacto-RGD in cancer patients.” J Nucl Med. 46:8

(August, 2005), pp.1333-41.
2) Burley, James Craig. Using and porting GNU Fortran. Version 3.4.6. Cambridge,

Mass: Free Software Foundation, 2006.
3) Feldman, S.I., Gay, David M., Maimone, Mark W., Schryer, N. L. “A Fortran-to-

C converter.” Computing Science Technical Report 149, Murray Hill, N.J.:
AT&T Bell Laboratories, March, 1995. Reprint available at
http://www.netlib.org/f2c/f2c.pdf.

4) Hindmarsh, Alan C. “ODEPACK: A systematized collection of ODE solvers.” In
Scientific Computing (R.S. Stepelman, et al., eds.) (Volume 1 of IMACS
Transactions on Scientific Computation) Amsterdam: North-Holland, 1983, pp.
55-64. Reprint available at http://www.llnl.gov/CASC/nsde/pubs/u88007.pdf.

5) Kiehl, Thomas R., Mattheyses, Robert M., Simmons, Melvin K. “Hybrid
simulation of cellular behavior.” Bioinformatics 20:3 (March 2004), pp. 316-322.

6) Landers, Steve, and Wippler, Jean-Claude. “CriTcl - beyond Stubs and
compilers.” Proc. Ninth Intl. Tcl/Tk Conference, Vancouver, B.C. (September
2002). Reprint available at
http://aspn.activestate.com/ASPN/Tcl/TclConferencePapers2002/Tcl2002papers/
wippler-critcl/critcl.pdf.

7) Markus, Arjen. “Combining Fortran and scripting languages.” ACM SIGPLAN
Fortran Forum 21:3 (2002), pp. 10-18.

8) Markus, Arjen. “Doing mathematics with Tcl.” Proc. Third European Tcl/Tk User
Meeting. Munich (June, 2002). Reprint available at http://www.t-
ide.com/tcl2002e/mathematics.pdf.

