
Xtrace: a high-level extension of Tcl-trace
Florian Murr

Siemens AG - Corporate Technology
Otto-Hahn-Ring 6

D-81739 Munich, Germany
+49 (0)89 636-44949

florian.murr@siemens.com

Manfred Burger
Siemens AG - Corporate Technology

Otto-Hahn-Ring 6
D-81739 Munich, Germany

+49 (0)89 636-43209
manfred.burger@siemens.com

ABSTRACT
In this paper two Tcl-packages written in pure XOTcl [3] are
presented. The first “Xcom” is yet another socket-communication
package; the second “Xtrace” uses Xcom to provide an observer
command across multiple processes called “xtrace” that is
modeled along the lines of the well-known Tcl “trace”
command, but much more high-level.

Keywords
Xtrace, Tcl-trace, observer-pattern, distributed applications,
distributed user interfaces, model based.

1. INTRODUCTION
Tcl has much of the famous “observer pattern” built into the
language via the well-known Tcl-“trace” command.

The observer-pattern consists of some entity that might be
accessed and any number of observers who want to be informed
about these accesses.

Tcl- “trace add variable” provides observer-functionality
at core language level in a slightly modified way:

Any trace-callback-command, i.e. “observer”, does not only get
informed, but can intercept any attempted access and decide
whether to let it pass, to modify, or to block it. This reflects the
very low-level and immediate nature of Tcl’s trace command.

Being so low-level “trace” is best suited for extending Tcl with
new commands or control constructs.

The observer pattern on the other hand is often used in a
distributed context and is much more high-level in spirit.

If an observer resides in a different process than the observed
variable, intercepting an attempted access is out of question. Even
getting informed of every change of the observed variable is
sometimes too demanding.

Within a distributed observer pattern, consistency matters more
than immediate callbacks! - Therefore Xtrace favors high-level
comfort and consistency over direct access.

Let’s first have a look at the mindset that spawned Xtrace and
than at a simple example.

2. BASIC SETTING
The basic distributed setting we had in mind when developing
Xtrace consisted of:

• A “model” composed of XOTcl objects that reside at
the server.

• Multiple “clients” that are observers-of / actors-on this
model, residing in different processes or even on
different machines.

The clients are able to change the model, through setting of
variables, or through method calls and these changes get
propagated back to the clients, assuring that all clients mirror the
current state of the model. The process in which the observed
variables reside is henceforth called the “model” (or “server”).
[This notion is not completely correct, since xtrace allows in
principle that the model- objects / variables are distributed among
multiple processes, but we not yet made use of that possibility.]

The “clients” (“observers”) are typically interested in state-
transitions of the model. Such a transition of one consistent state
to the next often involves the change of more than one variable.
A high-level feature like xtrace will therefore propagate the
cumulated delta after all the simple variable changes are
complete. Fortunately Tcl’s event-loop gives a handle to find
moments when a consistent state should have been reached.

2.1 EXAMPLE 1
Consider some facility with several workplaces.
Appliances to be checked travel through these workplaces and get
different tasks performed upon them. Every workplace has a
“current appliance” variable and every appliance has a variable
for every task to be performed.
So in our example the situation at the model might be something
like this:

% ::workplace7 set currAppliance
::app12
% ::app12 set pTest
::task42
% ::task42 set values
{123 234 345}
% ::task42 set state
ok
% ::task42 set remarks
{}
% ::task42 set worker
::person773
% ::person773 set firstName
John
% …

Some monitor may show the “id”, “state” and “remarks” variables
of the current task on the current appliance at that workplace.

With Xtrace one may make use of

obj xtrace add ?-soft? chain vars cmd

and code this in a single command-line:
::workplace7 xtrace add \

{currAppliance pTest} \

{values state remarks} \

[list ::monitorCallback]

2.2 WELL-KNOWN OBJECTS
Xtrace works in the object-oriented setting of XOTcl and any use
of it is directed to some Xtrace-participating XOTcl-object.

Objects participate in Xtrace, when they provide a “toModel”
method, which returns the peer-object, to contact its model.
[There are some classes that may be used, either as base-class or
as “mixin” that provide default implementations for clients and
server.]

Some of these objects should be known at coding-time to any
client of an application, to kick-start Xtrace-communication.
These are the so called “well-known objects”. In example 1
“::workplace7” is treated as such a well-known object.

These objects only “live” fully on the server, but the client at least
knows that on the server there exists some object with this name.
– Usually the client also knows the type (classes) of these objects.
Other objects may not be known at coding-time, but get delivered
to the client during runtime. The client then could use another
“xtrace add” to listen to variables of those objects, too.

The client version of an (well-known) object is just a stub. It will
only have those variables that get mentioned in “xtrace add”.
These variables will be created as needed. The stubs usually do
not have the functional implementations for methods either.
Methods just send there call to the server.

[Actually there are some Meta-classes of Xtrace that provide these
functionalities. If you use

• “instproc” the method is implemented on the server and the
client,

• “instprocModel” the method exists only on the server,

• “instprocDist” the method gets distributed in the sense above.

But to get the idea, we usually abstract away such technicalities in this
paper.]

The model version of a well-known object is thought to be the
real object, be fully functional and have all the necessary
variables and methods.

2.3 VARIABLES
All the chain- and vars- variables exist in the client and on the
server. Just setting a variable (on the client or server) suffices to
let the change automatically be distributed. Since communication
takes place “after idle”, one may change many variables until the
next consistent state is reached and not until then the
dissemination of the cumulated changes starts.

2.3.1 “Chain” variables
The "chain" in example 1 is the list "{currAppliance
pTest}". Such a chain consists of variable names. These
variables are supposed to hold object-names as values or to be
empty. The idea behind "variable chains" is that starting with an
already known object (e.g. "::workplace7" which is known à
priori) which has a variable whose name is the first element in the
chain ("currAppliance"). This variable has some object-name as
value, which holds the next variable and so on.

2.3.2 “Vars” variables
The “vars”-list contains names of variables of the last object in
the chain. Normally these variables are XOTcl- class attributes of
some application specific class. They are not restricted to specific
value-types, as the chain-variables are. Our practical experience
has lead us to quite often use “dict” values [2]. (We used the
Tcl8.4 backport of “dict”.)

2.3.3 Slow clients
“xtrace add” has an optional flag “-soft”, that is intended for
slow clients. The client may be considered slow, because the
connection, or the machine of the client are slow, or because the
client has some time consuming task to perform every time he
gets informed by xtrace.
As a guiding example consider some rapid changing image, i.e.
some pseudo-movie and clients with different speeds trying to be
in sync, i.e. to show the same image. The variable “currImage” on
the server changes with some predefined frame rate. Since the
server may not show the image at all, but only hold the
“currImage” variable, speed is no concern there. If a client wants
to show the image, that may take some time (especially with Tk).
Without precautions in this respect, every change would be sent to
this client. In other words, messages arrive faster on the socket,
then the client can get them off and the socket would be jammed.
Here the “-soft” option comes to the rescue.
If a variable gets traced “soft”, then the server just sends an “are-
you-ready” message to the client, whenever the variable changes.
– The client responds when he is idle. When this response arrives
at the server, the up to then cumulated changes get sent to the
client. On the up-side the client avoids clogging of his socket and
stays in sync, on the down-side, he might miss some intermediate
changes and skip some of the image to be shown.

2.4 CALLBACK INTERFACE
When the callback-command “cmd” of “xtrace add” gets
called in the client the name of a “parcel”-object gets appended to
the command. This is an object of type “XtrcParcel” which
provides methods to comfortably extract all the information
concerning the changes that have happened.
Sometimes one is not really interested in getting the callback, but
is content when the variables in chain and vars are kept up-to-
date. This behavior is achieved by giving an empty callback-
command to “xtrace add”.

In either case, should any variable in "chain" or "vars" have its
value changed, then the change will be distributed to the clients
that are interested in this variable; i.e. all the clients that have an
“xtrace” registered for this variable and those whose chain
happens to contain the variable in question.

On the client all the variables that contribute to any of the
registered xtraces get mirrored from the server and get updated
with the current values before the callback command is called.
Additionally there is an interface on “parcel” that allows
retrieving the previous value of any of the variables in “chain” or
“vars”, so that the transition “oldValue newValue” for any of
these variables is available during the callback call.

Should for example "currAppliance" be set to "{}" the values of
"pTest" and its vars are no longer valid too. All changes in the
chain gets distributed and the callbacks called. The clients also
need no longer listen for changes on variables of the previous
“pTest”. Or should another appliance, with some other “pTest”,
take place in the “::workplace7”, the new corresponding values
get distributed. This is all handled automatically in Xtrace.

3. SYNOPSIS
The following commands are provided by Xtrace:

obj xtrace add ?-soft? chain vars cmd
obj xtrace remove chain vars cmd
obj xtrace info chain vars cmd

“obj” may be any well-known XOTcl object for Xtrace or an
object which is actually in some chain traced by xtrace.

“-soft” allows for slow clients.

"chain" is a list of variable names. The corresponding variables
must contain an object name or be empty.

"vars" is a list of variable names, of the last object in the chain.

"cmd" is a Tcl or XOTcl callback command.

Further details of the meaning of the different arguments of
“xtrace add” are described in chapter 2.

“xtrace remove” and “xtrace info” are most of all self–
explanatory. We do not describe it here.

4. REMARKS
Xtrace goes especially well in combination with the "dict"
command. Since a dict is a value, it may be the value of any of
the "vars" in an xtrace. Therefore one can bundle values in a dict
at the model, to facilitate observation.

The Tcl event loop has extraordinary power in synchronizing
asynchronous calls! Since xtrace (interprocess-) communication
takes only place when the process get "idle", some quasi-
simultaneous changes from different clients get synchronized by
the Tcl-event-loop. When the process becomes "idle" again,
xtrace assumes that a consistent state has been reached, that gets
distributed to the clients. - It is of course possible to program
against this assumption, but with only moderate consideration it is
possible to develop very stable and consistent distributed
applications.

The xtrace interface is very high-level, since the user just focuses
on the logical "chain of variables" and all the work of keeping the
corresponding values up to date gets done by the xtrace package.

Another feature that makes Xtrace high-level is the allowance of
slow clients. In that case Xtrace doesn't force the frequent

changes upon the client (which would clog the communication
socket), but informs that there has been some change and waits
then to be requested by the client to send the current cumulated
changes.
In very complex applications one even might consider not to have
only one model-process, but to distribute the model over multiple
machines. This should be no problem to xtrace, since every one of
the "well-known" objects knows how to contact its model and
these may well be in different processes for different objects.

5. COMPARISON OF “trace” AND “xtrace”
Xtrace is rather similar in spirit to the low-level Tcl-“trace
add variable”. Here is a list of similarities and differences
between "trace" and "xtrace:

• “trace” is low-level monitoring, intended to be able to
extend Tcl with new infrastructure. That is exactly what
xtrace uses Tcl-trace for!

• “xtrace” is intended for high-level observing. The new
structures support monitoring of consistent changes of
different objects and variables.

• "xtrace" is written in XOTcl, whereas "trace" is a Tcl
core feature.

• "xtrace" allows to observe more than one variable in
one call, it even allows so called “variable-chains” to
be observed.

• "xtrace" does not call the callback command, the very
moment the variable is accessed, but distributes the
cumulated changes when the process becomes idle.

• "xtrace" specializes on "write"-access to variables.
Read-only access of variables is not in its scope.

• "xtrace" may observe variables in objects in different
processes.

• "xtrace" is bidirectional. Variables get mirrored in the
observing client and changes get propagated in both
directions.

• "xtrace" callback gets delivered a "parcel" that contains
both: the old value and the new value of the variable.

• "xtrace" communicates using the "xcom"-package that
uses "sockets" for communication.

• "xtrace" allows clients that are quite slow to participate.
("-soft" option)

• "xtrace" allows the callback to be empty. - Only the
variable values keep getting synchronized.

• "xtrace" allows dynamically to extend the observed
objects. The chain of variables need not exist.

6. THE “Xcom” PACKAGE
Xcom is yet another socket communication package, similar to
the well known “comm” package [1].

Unfortunately "comm" had some limitations that lead us to
reimplement its functionality using XOTcl. (Some conditions

dubbed "race-conditions" in comm are quite natural in xtrace and
handled gracefully there.)

Xcom allows file-transfers to be triggered and a callback is
executed once the file-transfer is complete.

The request for some file lets the called partner create a
temporary file-server for this request and reply to the requesting-
partner, the host and port of this file-server. The requesting-
partner gets the file from the server and the callback command is
evaluated. - This works in both directions, from Xcom-server to
Xcom-client, or from client to server.

Xcom has some utility functions built-in for xtrace.

XOTcl allows to "mixin" classes dynamically, which makes it
very easy to account for clients "speaking different languages".
One client may speak "Tcl", just plain Tcl commands, another
client might use "XML", say a Flash-UI using ActionScript-
XMLsocket, still another client wants encrypted messages. Xtrace
just mixes in the appropriate encoding classes. - As a result,
Xtrace can communicate with each client in its preferred
communication language.

7. REFERENCES
[1] Comm., http://tcllib.sourceforge.net/doc/comm.html
[2] dict, http://www.tcl.tk/man/tcl8.5/TclCmd/dict.htm
[3] XOTcl, http://www.xotcl.org/

