

TDIF
Tcl Data Interface

Framework

Presented to the 14th Annual Tcl Developer
Conference by:

Sean Deely Woods

Table of Contents
Table of Contents... 2
Tables and Figures ... 3
Introduction .. 4

What is TDIF trying to solve? ...4
TDIF Philosophy ...4
TDIF Concepts...4

Node .. 4
Containers.. 4
Connectors ..5
Elements..5
Properties..5
Putting it all together...6

Usage.. 6
Bare Metal...7
Containers ..8

Container Handles..9
Elements ...10
Properties .. 11

Extending TDIF... 13
Connectors ..13
Writing Connectors ...13
writing Containers ...14
Writing Elements ..15
Writing Properties ..15
Writing in Different Object Systems15

Pay the Ferryman... 15
Stay with the times.. 16

Format for Schema Dicts ..17
Column... 17
Index... 18

Concluding Remarks .. 19
Further Reading.. 20
About the Author.. 20
Credits: ... 20

Graphics and Art...20
Fonts Used: ...20

Tables and Figures
Table 1 - Bare Metal Connector Methods ..8
Table 2 – Basic Container Exposed Methods .. 9
Table 3 – SQL Container Exposed Methods... 9
Table 4 – Basic Element Exposed Methods..11
Table 5 – Basic Property Exposed Methods .. 12
Table 6 - Connector Language Abstraction Methods ..14
Table 7 – Garbage Collector Interface..16
Table 8 – Methods to expose for Garbage Collector...16
Table 9 – TDIF Column properties .. 17
Table 10 – TDIF Column Types...18
Table 11 – TDIF Index properties..18
Table 12 – TDIF Index column properties ...18
Table 13 – TDIF Index Types ...18

Example 1 - Using TDIF .. 7
Example 2 - Bare Metal Use if TDIF...8
Example 3 – Basic container usage ... 9
Example 4 – Basic element usage ..10
Example 5 – Basic property usage ... 12
Example 6 – Scythe Implementation for [Incr Tcl] ... 15
Example 7 – cronos usage ...16
Example 8 – schema dict... 17

Introduction

What is TDIF trying to solve?
TDIF is a uniform methodology for accessing external data within Tcl.

Its genesis stems from a need on my part to have the same software run under multiple platforms
with different drivers to access MySQL. One distro of linux would ship with tclmysql. Another would ship
with mysqltcl. Windows ships with tclodbc. And then there was the change in mysqltcl’s interface
between mysql_ and mysql::.

At the same time sqlite was coming into it’s own, and I found myself replacing some MySql
applications with it. I was also having to occasionally dump data out of MS Sql and MS Access. Being a
lazy programmer, I developed a shorthand for all of the various database interactions I needed, and
then wrote a suite of tools to convert that shorthand to the native interface of the storage engine.

TDIF is my attempt to adapt my own techniques, developed over time, into a formal interface.

TDIF Philosophy
TDIF caters to two different audiences.

One audience is simply looking for a consistent way in which to feed bare statements into a database
engine. They want abstraction only so far as to ensure no matter what driver they use to access XSql,
they get data returned in a predictable format. We will call this BMI: Bare Metal Interface.

This audience can pretty much skip to the chapter on Usage, most of this paper describes the full
blown TDIF. Though the chapter on the Implementation may be an interesting read for those who wish
to add new drivers.

The second audience does a lot of work accessing data from multiple data sources at once. For
them, optimal database statements are a secondary concern. Their principle need is to transparently
load and save data regardless of the database engine used. If indeed, the data is coming from a
database at all. This interface uses all of the capabilities of TDIF: Tcl Data Interface Framework. TBMI is
still available for the occasional optimization, or function that TDIF does not provide for.

In TDIF tables, records, and columns are abstracted into containers, elements, and properties
(though I still call them ‘fields’ or ‘columns’ out of habit). This interface reduces all storage engines to a
port in which to drop key/value lists.

I use TDIF as a framework on which to build much more complex systems. Reducing everything to
key/value lists means that a webserver application no longer needs to worry about formulating
queries. A user migration script can simply dump a list from one engine to another. An application
writer can switch storage engines as a customization rather than a full-blown port.

TDIF Concepts

Node
A node is simply an object within TDIF this is otherwise not defined. Structurally, tdif.node is a class

that contains common operating elements of all the other object types. Method names use “node”
because most of the time TDIF does not know or care what type of object is referenced.

Containers
While it us useful to think of a container as a data table, don’t wrap yourself up in it. A data table is

only on kind of container in TDIF. Standalone files are another type. A bank of instruments could be
another container. In short, a container is any object in TDIF that acts as a grouping for other objects.

Containers can, in fact, contain other containers. Connectors are treated as a type of container.
Instead of spawning database record objects, they spawn container objects for tables and property
handling objects for columns.

A container can also spread it’s data over connectors, or multiple tables within a connector, or
conceivably multiple tables over multiple connectors. The point is, a developer simply writes and reads
data to the container object. The container object works out all of the details on where data is stored
and how.

Connectors
Connectors are a special kind of container that goes out and directly communicates with an outside

data store. Other containers use Connectors to interact with the outside.

Database connectors spawn off other container objects. File connectors spawn off the records they
contained with the file. Undoubtedly even more exotic arrangements will pop up as we go along.

The important takeway is that a connector is a container that has a few extra methods for
interacting with the data store. Sql connectors also provide some creature comfort utilities for
containers to formulate queries with.

Elements
Elements are objects that take data stored in records, and make them come alive within a TDIF

application. Unlike containers, they do not contain other objects. Though that can link to other objects.
Elements can also have data that spans multiple containers. (Though I suppose these should rightly be
called compounds.) An element can also be present in more than one container. The key thing is that it
deals with all of the data storage issue. All the application writer has to do is read and write key/value
lists.

Properties
Properties are a special kind of node that controls how data being interacted with is formatted and

validated. Think of them as objects that represent the columns in a database. If a container or an
element want to generate a form, they pass the current value for each field to the property object, and
it returns an Html input snippet. If the application wants to check if a new value is in a valid range, it can
ask the property.

Putting it all together
This diagram shows all of the different concepts in action:

Fig ure � 1 - TDIF in Act ion �

The above example is a system in which we have different types of people. One is our office staff, who
in addition to an entry in the online stafflist, also have an entry in the password table in unix. We also
have frontline staff who come and go, but have no need (nor would we wish to grant them access to)
our Unix system. A frontline staff element has all of the properties from the db.user table. Office staff
have the properties from the passwd table in addition to the db.user table. Our element understands
how changes to a field on one system need to reflect changes that take place in another.

For instance, if we change someone’s last name on the staff directory, we also need to update the
GECOS field in Unix if they are to be displayed properly. And of course some admins would find that
writing directly to the passwd file to be a bit repugnant. So the passwd object makes all of it’s updates
through the usermod function. Also, no engineer worth his salt would put his security system at the
mercy of his website, so the system call is done on the webserver’s behalf by an another program.
How the passwd container does its job is immaterial to us. That is the joy of abstraction.

Usage
Let us building on our hypothetical staff directory/unix security bridge. We have a user “Betty

Random.” Betty marries a man with the surname “Stochiastic.” Betty, being an old fashioned kind of

gal, changes her name to Betty Stochiastic. Of only to avoid writer’s cramp from trying to sign Random-
Stochiastic on checks. Because this sort of thing happens a lot in any vibrant organization, we want to
design a simple way for our non-technical users in HR to be able to regularly update both the staff list
and the name that appears on our unix hosted file server and domain controller.

A snippet of TDIF code to perform this update would look like this:

Create the connector objects
tao::create_object maildb [lappend $dblogin class ::tdif::connector::mysqltcl]
tao::create_object passwd [class unixEtcPasswd]

Create the staff directory container, and link it
tao::object_create staff [class staff_directory dbCon maildb passwdCon passwd]
tdif Container staff staff

Spawn an object to handle brandom’s account
set uObj [tdif spawn_object staff brandom]
$uObj displayName
Betty Random
$uObj Get
uid 1337 gecos {Betty Random} name_last Random name_first Betty
uname brandom active 1 mail brandom@fi.edu
$uObj Set {name_last Stochastic}
Note that the name field has ALSO been updated
$uObj Get
uid 1337 gecos {Betty Stochastic} name_last Stochastic name_first Betty
uname brandom active 1 mail brandom@fi.edu
Send changes back up to the containers. In the process, destroy the object
$uObj renew
passwd nodeGetField brandom gecos
Betty Stochastic

Example 1 - U sing TDIF �

The example above glosses some important details:

• How did we write the classes that drive this example?

• How does the object decide what fields go to which container?

• Which methods are standard TDIF, and what have my examples created?

• What does that “tdif Container” step do?

• What is that “spawn_object” step?

• Why does the table have the name staff in some places and staffObj in others?

All of these questions, and more will be answered in the course of this paper. We will begin with TCL
interface, and work our way into creating new objects and finally creating new connectors.

Bare Metal
Many developers are not going to want TDIF to handle their table objects, nor provide transparent

updates to things. What they do want is a consistent face with which to communicate to their
database of choice. For these users we provide a subset of functions called the “BMI”, the Bare Metal
Interface. Essentially if you have the classes for the connectors already defined, you can call them into
being and be on your merry way without all this talk about containers, elements, properties and
whathaveyou.

What you do get is a consistent interface for any database the Tcl has a driver for, and someone has
taken the time to code a TDIF wrapper. Here is a simple example of BMI in action:

Call the connector object into being
tao::class maildb [class tdif.connector.mysqltcl \
 db_user smtpd db_pass password database maildb db_host localhost]

Cry havoc an let loose the dogs of war
maildb query_flat "select email from user where username=‘swoods‘"
swoods@fi.edu
maildb cmnd "update user set name 'Evil Twin Skippy‘ where username=‘swoods‘"

Example 2 - Bare Metal Use i f TDIF �

Every TDIF connector exposes the following methods. They assume you know the native language of
the database. Results are returned as a list, or a flat list. Doesn’t sound all that thrilling, but it’s actually
the first feature that led me down the road to developing TDIF in the first place:
Method Description
cmnd statement Send a statement to the database that does not return data
query statement Send a statement to the database the returns data, and format it as a list. Each row is

one list item
query_flat statement Send a statement to the database the returns data, and format it as a flattened list.

Each column is one list item. Useful for feeding into foreach statements.
describe table Using whatever means available, returns a dict that lists all columns and indexes for a

table object
sqlfix string Escape out any special characters in a string that could be interpreted as part of the

statement
sqlprep string Format a string complete with quotes to mark it as a value to be inserted as a column

Table 1 - Bare Metal Connec tor Me t hods �

Connector objects are free to add additional methods to exploit the special features of their
particular database engine, provided they do not overwrite one of the currently meaningful keywords.
Keep in mind, connectors ARE containers, so in addition to the above 6, so all of the Container
keywords also apply. See the appendix for a complete (as of the date of this writing) list of methods.

By convention, if your connector contains other sub-storage elements, container operations interact
with meta-data, tables, columns, etc. If your connector goes right to a table, or some other flat data
storage, container operations interact with its records.

Containers
Containers are a corpus of data. Developers use them to provide a consistent interface to data

tables and other logical storage units. Containers do not technically store data. They simply pass the
messages between the nodes that use the data and the engine where the information is stored. They
are also responsible for calling element and property nodes into being, as well as cleaning them up
when the container is destroyed.

Some containers need to speak through a connector object. Others are tied directly to the data
store. The difference is immaterial to the programmer. Their job is essentially to read and write
key/value lists to a node identified by the nodeId.

A container in action (note we are re-using some of the objects from example 2):

Create the table object using a class that reads the schema from the connector
::tao::object_create staffObj [class sqltable.static.autodetect \
 table maildb.user sqlObj maildb]
Associate staff as a tdif container
tdif Container staff staffObj
staffObj nodeGetField 1104 name
{Evil Twin Skippy}
Send an update through the container
staffObj nodeSet 1104 {name {Sean Woods}}
See that the change has actually gone through
maildb query_flat "select name from user where username=‘swoods‘"
{Sean Woods}
staffObj nodeGetField 1104 name
{Sean Woods}

Example 3 – Basic con ta ine r u sage �

Containers expose the following methods to developers:

Method Description
nodeSet nodeId keyValueList Update set contents of nodeId with the values in keyValueList
nodeGet nodeId Return the entire contents of nodeId as a key/value list
nodeGetField nodeId fieldName Return the value of field stored in nodeId
nodeGetFields nodeId fieldList Return the value of each field in fieldList stored in nodeId as key/value list
nodeDelete nodeId Delete the node stored at nodeId
nodeClass nodeId Return the class that defines how the node at nodeId should be generated
nodeAlias string Return the address of a node that is associated with the alternate

identification of string
train nodeId Return a dict that is used by the object manager to create a spawned node

object. Must include a value for class, globalName, node_id, and
containerObj

tdifAttach Method called when a container is associated with tdif.
/container If this container is a child of another container, return the object handle of

the parent.
/node nodeId Return a node object to represent the data in nodeId
/property propertyName Return an object handle for the property node that validates and

represents the field propertyName.
spawnedNodes Return a list of all nodes this container has spawned

Table 2 – Basi c Conta i ne r Exposed Me thod s

SQL Containers add a few additional methods.

Method Description
/sql Return the connector object of the Container
tdifAttach Method called when a container is associated with tdif. SQL table objects

use this method to populate the connector object with meta-data
schema Return a dict with sub-elements that define the columns, indexes, and

primary key of the table
nodeNext Return the next available nodeId
nodeMatch keyValueList ?like? Return a list of nodeIds that match the properties given by keyValueList. If a

1 is given for “like”, the system matches using a pattern match instead of
literal value.

Table 3 – SQL Conta i ner Expo sed Met hod s

Container Handles
One may ask, why the manual step of running tdif Container? Truth be told, there is nothing keeping

you the developer from adding that step to an object’s constructor. The reason I include it in the
example is to show that tdif is designed to play well with other object systems. It also is a nice way for
me to mention the global record addressing system that tdif uses.

Suppose you wish to link records in two different containers. Yes, yes, if they are on the same SQL
system you can create foreign keys and whatnot. But in script, say we have an entry in MySQL we wish
to have associated with an entry in Sqlite. There is no realistic way to bind these things natively in the
data store, so tdif has to do it in script.

To facilitate this kind of linking, tdif associates each container with a handle. During setup, the handle
is associated with the object that is the actual container. A container can answer to many handles, but
each handle can only be associates with on container at a time.

When we link records within the same container, we simply list the record ID numbers. (Or whatever
the primary key is.) However, if we link to a element that is in another container, we add the handle of
the other container. Because this link is stored in the actually data backend, and because we have no
idea what the actual object that defines the container will be called in future implementations, we refer
to it by this made up handle.

What handle a container answers to is entirely the responsibility of the developer to maintain.
Though one convention I’ve developed for my webserver is to associate users with whatever container
stores my user list, and groups with the grouplist. In my access control system, I can simply store
links to users-1104 and rest assured that however we are accessing the user list, as long as I keep a
global number paired with an employee id, I’ll be referring to user 1104, aka swoods, better known as
me.

I’ve used this system for 6 years, and through countless technology changes. It works, even if the
object systems change, tables move, and data technologies change. In my case the user list has
moved from tfi.staff to mailbd.user, and will probably be an entry in LDAP pretty soon.

The other reason is to uncouple container objects from the same container system used to define
TDIF. Because all of the interactions take place through object methods, there is nothing to keep a
container (or any other object for that matter) defined in SNIT or XoTcl from working with TDIF. (TDIF
itself is written in Tao). So not only could users-1104 refer to database element in a completely
different data store, the class that defines it could be written in an entirely different object system.

So why the convention of internally links be just the id, and external links be the container-nodeId?
Because handles can change. If I decide to start referring to users as staff, how will I maintain all of
the links that have already been created? What if a container is both users and staff? You start
having to check all names for the container past, present, and possibly future just to find simple links
between records. Not a happy state of affairs.

It doesn’t hurt that a lot of db admins also just store record numbers in indexes, so this convention
lets me rip link data direct from the database.

Elements
Elements are packets of data brought to life as objects. While they express the greatest variety of all

objects in TDIF, they have the simplest interface. Elements are almost never created directly. They are
spawned by their containers.

Here is a short example of elements in action. Again, this example builds on the previous example
and makes use of the containers and connectors already created:

Spawn an object
set recordObj [staffObj /node 1104]
$recordObj globalName
staff-1104
$recordObj Get name
{Sean Woods}
$recordObj Set {name {Evil Twin Skippy}}
$recordObj renew
staffObj nodeGetField 1104 name
{Evil Twin Skippy}

Example 4 – Bas ic e leme nt u sag e �

In the above example, we spawn off an element object, write a value to it, and then save the changes
back to the container. renew is an inside joke with me. It uploads changes and then calls the carosel
method, that puts the object in line to be destroyed on the next pass of the garbage collector. (It’s a
reference to the movie Logan’s Run.)

Why does upload lead to the destruction of a element object? It’s the only way to consistently handle
elements that change class based on their contents. At least in my experience.

Take a work order, for instance. It starts off as a problem report. After it is reviewed, it becomes a
work order. That work order is then assigned to someone. Once the person assigned the work order
has completed the task, the work order is marked completed. Once the supervisor is satisfied that a
work order has been completed, it is closed.

In each phase of it’s life cycle, the element responds differently to stimulus. While one could simply
devise a grossly complicated all-seeing/all-dancing class that deals with all of the states through
conditional statements… it’s been my experience that these systems are a gory mess. Much better to
define each state as a different class of element, and then use inheritence to keep the exploit the
similarities.

To be a TDIF element, an object must respond to the following methods:

Method Description
trashRecord Signal to delete this node’s data from the parent container on destruction

of the object
carosel Signal to the garbage collector to destroy the object on the next pass
renew Upload the internal representation of the object to the container, and then

carosel
NodeId Return the ‘primary key’ of the element in the container
globalName Return the fully qualifed name of this object: containerHandle-nodeId
Get ?field? Return the complete contents of the element as a key value list if not field is

given OR
Return the value of a specific property of the element

Set keyValueList Update the internal representation of the object with the values in
keyValueList

Input keyValueList Validate/Format all of the values in a keyValueList (Does not change the
internal state). Throws an error if a value is out of bounds. On success it
returns a key/value list with values reformatted for the native store.

/property propertyName Return an object handle for the property node that validates and
represents the field propertyName. Note, this object will be the same
whether you call /property from an element or it’s container

/container Return the object handle of this elements container

Table 4 – Bas ic Elemen t Exposed Me thod s

Properties
Properties are the oddest part of the TDIF implementation. Early in the design, it became clear that it

was useful to think of columns as objects unto themselves. Rather than store data, they were the voice
of reason that understood all of the validation rules for the column. The column object knew what the
max size for a field was. It would throw an error if we tried to store an integer in a string field, or vice
verse. When I implemented an HTML display engine, the column object generated the individual user
interface elements for each field, be it an input box, a dropdown menu, etc.

Because it is handy to have an element call for a property, we provide a mechanism for it to do so.
Likewise, if we don’t yet have an element, but we want to create a form to generate one, it becomes
useful to call up a property from the container. Thus, both object types can call up property objects on
demand.

While properties do not store element data, the do store their own information. Tidbits like the size
and description for the field. This information is stored in the connector object. On nodes that are both
the connector and the container, it’s assumed the developer will be able to figure out which nodes are
records and which are properties.

Containers have the option to generate all of their properties during tdifAttach, or to simply call
them into being in response to a /property call. Most elements redirect /property calls to their
container for this reason. elements are also welcome to generate their own properties. The key is that
the object spelled out should be consistent whether the call is made to the container or the element,
and that the the first thing the /property method should do is check to see if a property exists before
creating a new one.

Properties are not subject to the same garbage collection as elements. It is assumed that they will
stick around until their container is destroyed.

Here is an example of property object usage. Again, this build on the objects we’ve created in
previous examples.

Spawn an object
set nameObj [$recordObj /property name]
$nameObj Display [$recordObj Get name]
Evil Twin Skippy
$nameObj htmlEntry [$recordObj Get name]
<input name=maildb.user.name value=“Evil Twin Skippy“ size=40>
$nameObj Input "An Increadibly Long String that is sure to exceed the size …“
An Increadibly Long String that is sure t

Example 5 – Basi c pro pe rty u sag e �

Method Description
element Return the fully qualified path of this column (for use in forms and database statements)
Label Return the description of the property
Display value Render value into human readable form for the current display engine
Export value Render value into human readable plain text
Input value Check the validity of value, and convert an inputted value into native format of the

storage engine
Entry value Return a string, block, or script that defines a UI input form for this property
Search value Return a string, block, or script that defines a UI search form for this property
Hidden value Return a string, block, or script that defines a hidden UI element form for this property
Dump Return the value entered into the form generated by Entry in a tk window
Update value Update the display widget in tk window with the new value
Options For boolean and select fields, return a list of valid options

Table 5 – Bas ic Prope rty Expo sed Met hod s

Extending TDIF
The reference implementation for TDIF is written in my own object system, Tao. Tao currently

requires either Tcl 8.5, or Tcl 8.4 with either the Dict or sqlite package. There is no earth shattering
technology in Tao that would prevent TDIF from being re-written in any other object system.

TDIF also does not care what object system a node (be it a connector, container, element, or
property) is written in. It will be perfectly happy passing data back and forth through an incr Tcl, Tao,
snit, or plain old namespace. Simple implement the method as outlined in the usage section.

Writing in Tao would only be required to extend or enhance the existing library of connectors,
containers, elements, and properties.

Connectors
Connectors written in Tao have two parts:

 Data Language Interface – Translates between the TDIF and the specific SQL dialect of the
database server.

 Data Driver Interface – Translates between TDIF and the Tcl interface of the database
connection driver.

Why two? Basically the dividing
line between the Protocol and the
Connector is pretty blurry. To the
right is a simplified relationship
between the connectofs in TDIF.

TclOdbc, TclMysql and MySqlTcl
all have a radically different
connection driver. They are a raw
pipe into MySql, though.

TclODBC doesn’t just talk to
MySql. It can talk to everything
from Microsoft SQL, to access, to
.txt files. It can also talk to
PostGres, MySql, BerleyDBs, and
so on. While the driver is identical,
the language and features
available depend on what type of
database you are connecting to.

Then you have Sqlite, which is it’s own language, its own driver, and it’s pointless to try to separate
the two. In other cases, our “driver” is really a raw socket talking to a relay. Once you abstract, it’s
really hard to think of connectors as monolithic things anymore.

Because we have no control over the data languages, and it will take some years for the driver
writers to catch up with a standard interface, we need to accept their diversity as a fact of life. Each of
system has its own capabilities, hindrances, and design panache. Sometimes a function a function we
are looking for is in the language.

And then we have LDAP. Which I briefly tried to integrate, but frankly don’t understand enough about
to sensibly formulate policy. It did send me down the path of abstracting out database command
statements though.

Writing Connectors
Essentially a connector needs to implement every method that a container object would need to call

to access data. This includes abstracting out common queries and language constructs. Why? Well

some language provides a very nice way to INSERT OR REPLACE. Which saves a lot of work on
updates, since we don’t have to check for the existence of a record. On others, we check first, if a
record exists we INSERT, otherwise we UPDATE. And, depending on your SQL dialect, INSERT and
UPDATE have very different syntaxes.

In other cases we have features like full-text searching. It’s nice if you have it. But many database
systems don’t. So we have to fake it. I’ve prepared a table of all of the methods that my Containers call
and my Connectors implement. There will undoubtedly be more as we move along.

Method Description
stmt_insert {keylist valuelist dtable} Return an insert statment
stmt_exists {keylist dtable} Return a 1 if the record in keylist exists in table, 0 otherwise
stmt_replace {keylist valuelist dtable} Formulate an INSERT OR REPLACE where it’s available,

Otherwise call stmt_exists and return an INSERT statement or an
UPDATE statement as appropriate

stmt_select {keylist fieldlist dtable} Return a select statement
stmt_update {keylist valuelist dtable} Return an update statement
stmt_where {keylist {forbid_null 0}} Return a where statement, optionally yell if we try to enter a null value
stmt_delete {keylist dtable} Return a DELETE statement
table_qualify {rawtable} Convert a db.table to just table on the braindead systems that don’t

handle it properly. In the systems that DO handle db.table, make sure
we add db if we just give table. Essentially we always want to call a
table by the same name

column_qualify {rawcolumn {table {}}} A similar process to table_qualify for columns. On systems with no
concept of alternate databases, make the reference:
table.column. On those that do, make it db.table.column. And by the
way, make it relative to table

table_exists table Return 1 if a table exists, 0 if it doesn’t. And use the best mechanism
you have.

searchStmtPrim {var op val} Return a comparison statement in the native form for op the
database. Valid ops in TDIF are:
 match notlike isnot = > <
Also convert null and now in the val field to either a native
representation, or some tcl calculated value.
Not too useful for SQL, but essential when we go to add non-sql data
languages

searchStmtJoin {joinop stmtl} Connect several conditions created by searchStmtPrim into a
compound conditional. Again, SQL we all know how to do. This is
primarily for other languages.

searchStmtNest stmtl Nest a compound statement into a single conditional. (In SQL we use
parentheses. Other systems do it differently)

table_create {table schemaDict} Create a table, if it doesn’t already exist, to the spec defined in
schemaDict.

stmt_create_column {field infoDict} Return a column creation statement for a column named field using
the information in infoDict as a guide.

stmt_create_index {idxtable idxname
infoDict}

Return a statement that will create and index of idxname on idxtable
according to the specs in infoDict

stmt_create_table {table columns
indexes {table_type {}}}

Generate a statement that will create a table with the columns
defined by the columns dict, the indexes dict, and of type table_type.
At present, temporary is the only alternate type TDIF understands.

searchFullText {value {columns {}}} Generate a fulltext search statement. If fulltext is not available, fake it.

Table 6 - Connec tor Language Abst ract ion Met hod s �

writing Containers
Containers would seem to be the hard part. There are so many, with so many different shapes. From

a TDIF perspective, though, they are quite simple. And if you looked at the section on writing
connectors, you’ll see that most of the heavy lifting has actually been abstracted out to the connector.

Sql connectors are available with the stock release of TDIF, and all that is really required to
customize them is to supply the proper schema. In most cases, I either dump data from the connector

object, or I provide a hard-coded dict to return through the schema method. There really isn’t any
magic going on behind the scenes.

A default container stores information as an in-memory dict. SQL containers redirect the nodeGet
and nodeSet commands to pull data from the connector instead. And even there, they don’t build sql
statements. They farm that out to the connector.

The only trick is keeping track of what you spawn off in the way of element and property nodes, so
you remember to destroy them when you destroy the container. Now containers do get to be
monstrously complex. But the complexity is all driven by the application. The needs of TDIF are simple
and few.

Writing Elements
Elements are only as complicated as your application. Beyond the basic methods outlined in the

usage chapter, there are not magic interactions. You only need to be aware that garbage collection
does take place, and elements are not permanent

Writing Properties
Like elements, the methods that TDIF provides are minimal for inter-operability. How they are used,

and what additional methods you chose to implement are your own.

Writing in Different Object Systems
TDIF is blind to what object system you are actually using, assuming you are using an object system

at all. TDIF does make a few small requests if you do decide to strike out on your own and write objects
that interact with TDIF in a system other than Tao:

Pay the Ferryman
If you write elements in your own object system, implement a “scythe” method for the garbage

collector to call. scythe should return a procname to evaluate which will destroy your object. The
garbage collector calls: “[$object scythe] $object” internally. If your object system has an ensemble
command “object destroy $object”, just define a proc that takes care of the details. For instance:

proc itclScythe objname {
 ::itcl::delete object $objname
}

Example 6 – Scyt he Im plemen ta t ion for [I nc r Tc l]

When a temporary object (especially elements) come into being, register with the garbage collector
thatanos. All that’s required to add an object to it’s accounting is a call to thanatos alloc $object. Once
thanatos has it allocated, it will delete temporary objects whenever you call: thanatos cleanup.

By convention, if you want to prevent the garbage collector from destroying an object, return an
empty list when scythe is called.

For web-engines, I call thanatos cleanup at the end of every page view. TK based systems should
probably call it after a data entry screen closes. Thanatos will only delete objects that have been
“kissed.” Tao calls thanatos kiss $object at the end of the carosel method.

Thantos also destroys objects if they have been idle for 60 seconds. To mark an object as not idle,
call thantos touch $object. This will grant it another 60 second lease on life. To change the lease
length for all objects, set a new value for ::thanatos::kill_time. Kill_time takes integer values, in seconds.

The complete interface to thanatos is:

Method Description
alloc object Add an object to automatic garbage collection
free object Remove an object from automatic garbage collection
touch object Extend an object’s lease on life
kiss object Trigger an object’s destruction on the next call to cleanup
knock Check to see if any objects are set to be destroyed. (If zero, cleanup is not

called)
cleanup Run through and dispatch any object that has been kissed or whose lease

has expired

Table 7 – Garbage Co llec tor I n terf ace

Thanatos expects to see the following methods in any object it interacts with:

Method Description
scythe Proc to call to destroy an object

Table 8 – Met hods to e xpose for Garbage Col lec to r

I would also like to point out that “thanatos kiss” should not be called during an object’s destructor.
Odd’s are if the destructor has been called, the object has already been kissed. What you may want to
do is “thantos free” the object. This will remove if from garbage collection no matter if it self destructs
or is removed through another mechanism.

Stay with the times
TDIF includes a built in schedular object chronos. Chronos is called periodically to run tasks. Rather

than invent your own periodic task use TDIF’s. Chronos requires no exposed methods in objects.

The MySql connector objects presented a troublesome problem for me because the idle/reconnect
feature in the drivers is broken, wounded, or missing. So I had to implement my own in script, thus the
genesis of Chronos. To use chronos:

set jobId [::chronos::JobCreate name "Test Job " \
 interval 60 script "puts {Hi There}"]

Hi There
Hi There
….
::chronos::JobKill $jobId

Example 7 – cro nos u sag e �

Format for Schema Dicts
Containers report their schema as a dict. The table_create function in the connector objects ALSO

takes data in as a dict. What is the format for this dict? The dict has four main entries: column, index,
primary_key, and type.

staffObj schema
primary_key uid
column {
 uid {type intkey}
 username {type char length 32 required 1}
 name {type string desc {Full Name}}
 name_last {type string desc {First Name}}
 name_first {type string desc {Last Name}}
 mail {type char length 64 required 1 desc {Email Address}}
 active {type boolean options {1 0} states {0 no 1 yes} default 1 \
 desc {Display on Stafflist}}
 password {type password crypt sha1 length 64 sqltype char \
 desc {Password}}
}
index {
 uuname {type unique columns username}
 uemail {type unique columns email}
 maildx {type index columns {
 uid
 {username direction ascending}
 {email length 16 direction ascending}
 }
 nsearch {type fulltext columns {name name_last name_first}}
}

Example 8 – sc hema d ic t �

Column
The column dict lists each column in a table in the format: columnName {key value …}. This dict is

used to generate property nodes. The table of values used by TDIF are as follows:

Property Description
type What type of property (see table)
sqltype Native storage type (optional)
desc Property/Column description
length Length of the field (longer values are truncated on Input)
width Display size of the field
default The default value for the column
options For enum and select types, the range of valid values
states Mapping of stored values to human readable values
required Allow null values
collate Colation to use on column. Valid values:

binary, nocase

Table 9 – TDIF Co lumn prop er t ie s

TDIF
Type

MySql
Representation

MSSql
Representation

Sqlite
Representation

Description

string tinytext char(length) string Generic String
int,
integer

int int int Integer

intkey … … … Auto Incrementing Primary Key
(implementations differ between data engines)

char,
varchar

varchar(length) char(length) string String of fixed width. Note that the collate
option will select char or varchar in MySql to
emulate the collate functionally in sqlite.

text bigtext text string Large block of text
select enum(options) char(length) string Enumerated list of values
boolean tinyint tinyint int 1/0 or Y/N or True/False value
Table 10 – TDIF Column Types

Index
The index portion simply lists all of the indexes, by name, as well as a type and columns affected.

Field Description
type Index Type:

index, unique, fulltext
storage Native storage engine to use (if supported, ignored otherwise). In MySql

available values are: BTREE and HASH
columns Dict describing the columns indexed

Table 1 1 – TDIF I nd ex pro pe rt ie s

Field Description
length Integer, length of the field to index
direction Sort direction to index by this column.

Valid values:
 asc, ascending, desc, descending

collate Colation to use (if supported by database, ignored otherwise)
For sytems

Table 1 2 – TDIF I nd ex co lumn pro per t ie s

TDIF
Type

MySql
Representation

MSSql
Representation

Sqlite
Representation

Description

index index index index Generic index
unique unique index unique index unique index Uniquely constrained index
fulltext fulltext index emulated emulated Fulltext search index
Table 13 – TDIF Index Types

Concluding Remarks
TDIF is a work in progress. My intent is to at least start a conversation on how we in the Tcl

community can begin adopting a formal way of interfacing with external data. Why is such a framework
desirable?

Newcomer Friendly

For starters, it makes the system friendlier to newcomers. I won’t pitch this as a major reason for
adoption, but it is at least a nice side effect. Few can argue though that providing a consistent interface
for all database connections will make documenting simpler.

Interoperability

A stronger reason than consistency for consistency’s sake is that software developed for one
system can be more easily integrated into another if they can at least agree on how to access the
database. By abstracting most of the SQL statement generation, one also allows software originally
developed for one environment to be turned around and used in another with little to any modification.

Optimization

We are not all SQL experts. By abstracting out common functions to a system that can be
customized for the individual database engine, we can exploit performance enhancing tricks. Take for
instance using the “INSERT OR REPLACE” statement in Sqlite, instead of the conventional two step
process required for other databases.

Safety

Abstracting out SQL statement generation also allows us to catch common mistakes. Say a “DELETE
FROM TABLE” or “UPDATE” with no WHERE condition. It also ensures that all of the data from Tcl is
escaped properly, and won’t cause a bizarre interaction if someone manages to input a value that just
so happens to be the name of a column, and they JUST so happen to have not put the value in quotes.

It doesn’t just work for SQL

By abstracting the concept of tables out to containers, we open ourselves to an entire world of data
storage systems. We can write a handler that wraps around a flat file. We can transparently relay
database calls to another machine.

Code can work in multiple operating environments

A case in point, I have libraries of scripts the run from a shell environment on various server as well
as withing my tclhttpd base intranet. Depending on the computer, it may or may not have access to the
mysqltcl package. If it does not, I create an object, with the same name, that takes all of the calls that
would have gone to the mysqltcl connector, and instead relays them to a helper daemon running on
the database server.

My software doesn’t know, or care, which is which.

For all of these reasons, and more, I hope that TDIF will spark a conversation, if not a change in
thinking, on how we treat outside data. Feel free to contact me with suggestions on how TDIF can be
improved.

You can download a reference implementation of TDIF, as well as Tao (the object system it is written
in) at:

http://www.etoyoc.com/tao

Further Reading
“The Tcl Architecture of Objects”, Sean Woods: http://www.etoyoc.com/tao/

About the Author
Sean Deely Woods is the Senior Network Engineer at the Franklin Institute Science Museum in

Philadelphia, PA. He has been writing in Tcl professionally since 1997. His claims to fame include a
serial port driver under MacOS classic, and the famous “Hypnotoad” presentation at the 13th tcl
conference.

Sean can be reached via email at: yoda@etoyoc.com

He maintains an independent website at: http://www.etoyoc.com/

He can be found on the Tclers chat under the pseudonym hypnotoad

Tclers Wiki entries by him are normally signed SDW

Credits:

Graphics and Art
Cover Graphic, “Game Console”, Username MachZero, ConceptArt.org:
http://www.medievalfx.com/machzero/graphics/050420a.jpg

Fonts Used:
Text: Eurostile
Title: Mainframe
Headings: Mainframe, MetroDF, Monoglyceride
Captions: Aerovias Brasil NF
Code: Monoco CE

