GEB: SQLite in Tcl/Tk in SQLite

Abstract

GEB is a Tcl/Tk program for displaying and
manipulating SQLite databases. Each of its
major functions is stored in an SQLite table. It
has much of the functionality of the SQLite
stand-alone executable, plus spreadsheet-like
table display, nearly complete ALTER TABLE
functions, SQLite version 2 to version 3
conversion, the ability to execute a table as
either SQL or Tcl, and a few other functions I
had a need for. The name GEB was chosen
because using an SQLite database to store the
program which displays and modifies the
SQLite database itself seemed reminiscent of the
“self reference at a higher level” which was a
recurring theme in the book “Gddel Escher
Bach: An Eternal Golden Braid.” If you insist
on interpreting it as an acronym, it could stand
for “Gerry's Experimental Box,” but that is
really a backronym.

This paper contains a brief background and
history of GEB, a discussion of its current
capabilities, and a list of some possible future
additions.

Background

GEB began with a desire to migrate some
smallish database projects from proprietary s/w
(MS Access and dBase n) to FOSS. SQLite
caught my eye. Neither the command-line
program (CLP) nor any of the free packages for
it seemed to do everything I wanted, so [
decided to roll my own. My project would have
to run on Linux and Windows, and I was
looking at both Perl and Tcl, with the former
having the edge because of its being used a lot at
work. I installed both language packages on
both platforms. Tcl and SQLite worked
perfectly on both systems. [had problems with
the perl package on one of the platforms (no
idea which one by now), so I went with Tcl.

Page 1

My goal was to put all the functionality I needed
into my package, so I wouldn't have to switch
over to the stand-alone executable or some other
program for some step in the middle of a
process I was undertaking.

I have tried to be extremely cautious about data
integrity. Algorithms have been kept as simple
as possible, to make them easier to verify. In
some cases where GEB generates SQL, the user
is shown the SQL and is given the chance to
decline to accept it.

History (showsqlite)

The first functions I needed were displaying the
tables in a file and their fields, and the contents
of a table. Figure 1 shows my first version,
which used text widgets. The upper window
shows one table per line, with the number of
entries in blue, the table name in black, and the
column names in red. Clicking on a table name
lists the contents in the lower window.

The display format was not appropriate for
editing the table contents, so a separate editing
window was created, shown in Figure 2. It was
opened using the Data — Edit menu.

Since I was always thinking of more columns I
needed to add to some tables, an Alter Table
function was needed. This window, shown in
Figure 3, was brought up by clicking on the
column names of a table. Columns could be
added or deleted, changed in order, renamed, or
copied. All changes were made by copying to a
TEMP table (possibly with changes), deleting
the original table, copying tot the original name
(possibly with changes), and deleting the TEMP
table. Since some kinds of changes are

incompatible with other kinds (for a single pass
through the alteration), some functions are
disabled and their buttons grayed out when
others are started. If two “incompatible”
functions are needed, the user is required to
make two passes through the process. The
generated SQL is shown, and the user can
cancel without making the changes. The
example in the figure shows the result of some
Move Up/Down operations. The Add, Rename,
and Copy operations are incompatible and their
keys have been grayed out, but Delete is still
available. The SQL listing shows everything but
the Commit Transaction, which is not sent until
the user accepts the action.

The main window displays, and the data edit
window were clunky, even by my standards, so
my first upgrade after basic functionality was
achieved was to switch to tkTable-based
display.

Upgraded Display (showtable)

The original impetus for using tkTable was
looks—getting a spreadsheet-like display. The
expected side-effect was getting a much nicer
format for editing and entering data. An
unexpected one pleasantly took care of a
potential problem with large tables. The
original text-based display was populated by
reading the entire table into memory and
inserting it into the text widget. This worked
fine with the data sets I was using, so [never got
around to coding something better, but it would
not have scaled well. The tkTable widget, in the
command data mode, calls a user-specified proc
for any cell it needs to display (or update), so
the size of the table is of little importance to the
display speed. I have thought a little about
speeding things up by reading the whole row
when the first column is asked for, and then
filling in the rest of the row from cached values,
but I have not been able to convince myself that
some race condition could not result in an
updated value being missed—and besides, the
current speed is acceptable. The main window

Page 2

now is as shown in Figure 4, which has the
standard spreadsheet-like look.

Clicking on a table name now brings up a
window like Figure 5, which not only looks
better, but also allows updating and adding data.

When updating data, the default is to require
confirmation for each cell changed, but there are
options for read-only (no changes allowed) or
making the change immediately, without
confirmation. Also, the capability to extend the
number of rows in the table can be set to Never,
Confirmation required, or Always done. Finally,
selected rows can be deleted.

Stand-alone Functions

This section covers capabilities of GEB that do
not interact (at least very much) with the basic
display and edit windows that have been
discussed so far. They were added over an
extended period of time, but will be covered
together.

Execute SQL/Tcl

There is often a need to execute a single line of
SQL or Tcl, so I created windows for those
functions. The result is made a little more
readable by allowing the user to specify the
number of items per line. Figure 6 shows an
example.

Run a Table

More than once I wrote and debugged some Tcl
code to process some data in an SQLite file, and
then could not find the code when I needed to
run it again. I hate doing things twice. A lot. So 1
started adding tables to the file with a column
named text for storing the code snippets.

Naturally, copying the data from these tables
and pasting it into one of the Execute windows
got old real fast, and so the ability to edit and
execute the code was added. I was really
worried about the code interfering with GEB, so
I experimented with executing the Tcl code in
either a safe interpreter or a special namespace. I
also included the ability to execute SQL code.
None of these special capabilities turned out to
be very useful, and this capability has not been
updated, but the lessons learned led to the Tcl
storing and execution that made it possible to
use the database file for storing the program
itself.

Import/Export

The CLP falls short of my import/export needs
in a few ways. First, in some cases my data has
the desires column names as the first line, and in
other cases it doesn't. Including the names is an
option for both import and export, as is picking
the delimiter. Second, in one data set all lines
contained the “essential” columns but some also
had some “optional” data. Therefore the import
routine optionally allows some lines to be
missing columns. It would have been easy
enough to handle the data manually, but why
spend a few minutes doing menial work if you
can avoid it with an hour or two of
programming?

There was also a separate capability to import a
single cell from a text file, or export it, similar to
the onecolumn method, but not using it.

Convert between Version 2 and
Version 3

This work started during the SQLite Version 2
days, and for a long time I refrained from using
any SQLite capabilities restricted to Version 3
so that my code would work with either file
format, but I eventually gave in, because of V3's
ability to do its own variable substitution.

Page 3

Anyhow, functions were added to convert from
V2 to V3 (because it was needed), and from V3
to V2 (for completeness, and to simplify
checking.

Putting the Program in the
Database File

When I read DRH's paper “SQLite and Tcl” I
was intrigued by the concept of storing the
whole program in the database file. I was not yet
familiar with Tcl's handling of unknown procs,
but the wiki showed how to use and extend that.
I had, or at least thought I had, all the other
pieces, so the basics were soon cobbled
together.

I did not exactly implement DRH's writeup,
since [wanted to reduce the number of tables.
Therefore I grouped the supporting procs with
the main proc for each function and put them in
a single table with the name of the main proc.

This had two impacts: There could not be
separate columns for the header and body of a
proc, and the support procs could not be called
from a proc stored in a different table, unless it
was known to already have been loaded. The
grouping of the procs was done properly, and so
the second theoretical impact has never been a
problem.

Two unexpected problems did arise, though.

I had never needed to work on more than one
file at a time, so I had not implemented
ATTACH capabilities. The program could look
at just one file, and that file was now the one
containing the program itself. No place for the
file with the data. A significant rewrite was
needed to handle attached files, with a bunch of
one-dimensional arrays describing the database
schema needing to be redone as two-
dimensional arrays, with the attach name as the
new index.

Secondly, the simple editing support the
program had was no longer enough. I could no

longer do a global search for the name of a proc
or variable and see every place it was used. So
the scope of the search routine was expanded to
cover all tables with a column named tcl.

Figure 7 shows the main editruntcl window, and
Figure 8 the search window. The two are tightly
integrated, with edits in one making the
appropriate changes in the other. In fact,
automatic propagation of changes is something I
worked hard to achieve, since the display or use
of obsolete data could lead to database
corruption. The one deliberate exception is the
tk_optionMenu widget in the editruntcl window,
whose table list must be reset manually by
clicking on the button next to it. This was
because updating the list affects the display, and
I wanted that under user control.

Program Organization

One goal was to put as much of the startup
process in the database, so that the external
bootstrap would be as small as possible. As can
be seen in Figure 9, that effort met with success.
The last two lines are optional, and one or the
other is usually commented out, depending on
the work being done. For program development
the editruntcl line is left uncommented, so the
main editing window will come up
automatically. Otherwise an attachit line brings
up a display of the desired data file.

The main_attach routine controls most of the
startup process. It must read in and execute two
procs to set up the array of table names needed
by the extended unknown handler. Refactoring
the functionality could reduce the number of
procs needed to one, but such strictly esthetic
improvements are low priority compared to
improving functionality.

Extending the capability of the unknown handler
is based on http://wiki.tcl.tk/2776. Whenever an
unknown proc name is encountered, the
::GEB::tcltablelist(main) list is searched for that
name preceded by main. (so that currently
attached files are not used for auto loading). If

Page 4

such a table name is found, the table is loaded. If
reading in the table defines a proc with the
desired name, that new proc is executed with the
appropriate arguments and its result is returned.
If either of these conditions is not met the
original processor for unknown procs is
executed.

All other functions are initiated with menus or
buttons.

Future Plans

The development process so far has been so
pleasant that I look forward to adding further
functionality. In the past it has often taken
longer to decided what I wanted to do and how I
wanted it to work than it took to implement it,
and I fully expect that to be as true in the future.

Two things I am planning to implement soon are
allowing wildcards (of the [string match] kind to
searches, and some sort of version control, at
least to the point of executing a stable version
while editing and testing a development version
of routines. Further down the road I may look at
a GUIfied way of doing Full Text Searches, and
setting up tkTable displays of views.

Potential Users and Licensing

GEB is a set of Tcl routines for displaying and
manipulating SQLite databases, stored in an
SQLite database. As such, it could conceivable
appeal to a wide range of users.

At one extreme would be a Tcl developer who
didn't care about SQLite. GEB could be used by
such a developer, but other environments are
more powerful in many ways.

At the other extreme is an SQLite user who
doesn't care about Tcl and doesn't want to learn
it. This use seems like a bit better fit, and there
is less competition, but most would still find
other programs more to their liking.

GEB is most likely to appeal to those in the
middle: those with some SQLite data and some
Tcl scripts for processing the data, who want to
keep, use, and maintain them together.

I intend to release GEB to the public domain,
since it would feel wrong for my contribution to
have a more restrictive license than SQLite
itself. Therefore, GEB may be used for any

Figures

' wish

File Table Run Data Help

Tables in F: Anizdata/ 20055 yrip/ 200550mp:

purpose whatsoever. Development is
encouraged, and especially if the new code is
also public domain.

Support is available—inquire within.

Gerald C. Snyder
mesmerizerfan@gmail.com

B

78 hmz2003 wotes cultivar hybridizer
21 amzZ003 wates cultivar hybridizer
453 testing a b o d e f

458 ballot2003 cultivar hm am wm dm symp

1 addfile text
1 addtable text
1 addtableandpad test
1 updatesympto2005 test
1 dozglite text
174 112 idnum woltes
286 14 cultivar idnum woles
289 121 wvotes idhum cultivar
202 120 culbivar wokes
376 M4 culbivar idhum vates
208 13 idnum wolbes
doregd test
copyregion text
copyregionBpCultivar
dosums test
addballotz2db
zZerosums best
2 excelabulation2004wote

ket

Lemt

S i L

4
<

Entries inrd:

453 spmp2004 R2004 Cultear oteg R2003 Hybrdizer Year Seazon Height Color

448 ballot2004 cultivar unique hm am wm dm o symp

Postion Cultvar R1 H2 R3 R4 RS RE RY A3 R3 R10

A

1 ABOYE THE CLOUDS 1 2

2 ACOMA 2 5

3 ACT OF KINDMESS 3 1

4 AFTERMOOMN DELIGHT 4 &
5 AGAIM AND AGAIN 5 4

6 ALIEM MIST 7 3

7 AMERICA THE BEAUTIFUL 8 &
8 AMERICAM CLASSIC 3 1

3 AMFLIFIED 10 1

10 AMMNA BELLE BABSOM 11 5
11 AMYIL OF DARKMESS 12 8
12 AMYTHING GOES 13 2

13 APRIL JEWEL 16 2

14 ARCTIC EXPRESS 18 1

15 AROUMD MIDMIGHT 20 2
16 ART DECO 21 1

17 AURA LIGHT 24 3

18 AUTUMM JOY 25 B

13 BABELING BEROOK. 27 8

20 BADITUDE 31 1

21 BARBARA MY LOVE 33 1
22 BAYBERRY CAMDLE 34 12
23 BEFORE THE STORM 35 17
24 BEHIND CLOSED DOORS 36 2

Figure 1. Pre-tkTable Main Display Window

Page 5

edittable

hm2003 — |
Row number being displaved out of 78
1
8]
b
Enter/edit data: |91|
[Accept without confirmation?

Figure 2. Pre-tkTable Edit Window

Fields in ballot2004

dm

Deletel .&ddl tove upl i ove dnwnl Henamel Eopyl

Do it| Cancel

Figure 3. Alter Table Window

Page 6

Ei- SOLite f:/fulltextsearch/showtable.sq3 as main |._||E X
File Table ETS Run Data Help

Entrigs F1 F-2 Fa 28
2 tel comments
1|t Comments
1 |t comments
3tel comments
1 |tcl ‘comments
1]tel comments 3
main, 2|l comments =
mnair. res 1|t |comments |
11 |user_id intec name text | a text defaul
. 1 |tel | comments |
< i | 3w

Figure 4. Main Window with tkTable

Ei: Table person in file main |:||E E|

I " Read-only ™ Confimation required ¢ Update immediately

Hefreshl Prirnary zort order = | [Desc Secondary sort order = | [Desc

uzer_id integer prinary key name ket a tewt default current_times

1
2
3
4
4]
5 5
7
3
3
1]

current_timesztamp

current_timestamp
current_timestamp

L [sa —

current_timesztamp

OO mw o

P ey B

current_timestamp

current_timesztamp

current_timestamp

2006-07-31 23:23:37
2006-07-31 23:23:54
2006-08-02 07.27.02

|

—
=
—

[

Add raws when maving below last row? O Mever Confim © Always

Delete rows |

Figure 5. Table Display with tkTable

Page 7

i runsgl

Enter pour line of SHL

|selec:t * from perzon

[termz per line, 0 meanz unlimited

current_timestamp

2 b curent_timestamp

3 a current_timestamp

4 b curent_time

5 b current_timestamp

B current_timestamp

¥ current_timestamp

g 2008-07-31 232337
2006-07-31 232354

10 2006-08-02 072702

11 2006-08-02 072712

Eraze |

Figure 6. Window for runsql

Page 8

i editruntcl

Select T able

main.zearch — Refrezh table Iistl

| (3

<

=

Undo| Redo| Save| Complete?| Backup| RunTcl|l Search| Esi

Comments

Eraze |

Figure 7. Window for editruntcl

Page 9

(=13
Fird;
Replace with: |

Fir'u:|| Find selectinn| Fleplan:e| Replace aII| v Confirmation required

T ables Test lines

frarme . find.f1
framg . find.f2
frame .find.f3
frame .find.f4
frame . firnd.f4.1
frame .find.f4.1.b
frarme find.f4.r
frame .find.f4.1.b

rnain. dofieldzedit
main. puthest

mait. exporttablefile
mair. editrantc
rmair. importtablefile
rnain. hewtable
rnain. editruntable
mair. runsq|

rnain. runtcl

main. editdata

main. copytable
rnain. zearch

rnain. initattachwin
rnain. braowseattachtable
mair. wizLualregexp

— =L (000 "] 00

Figure 8. Search Window

package require Tk; package require Tktable; console show
Create namespace for all "globals" and procs
namespace eval ::GEB {}
load /sqglite/tclsglite3.dll
load /sqglite/tclsglite.dll
set dbfile showtable.sq3
sqglite3 sqg $dbfile
set ::GEB::attachfilename (main) Sdbfile
proc evalsglitetcl table {
uplevel #0 [Join [sg eval "select tcl from S$table limit 1"]]
}
evalsglitetcl main attach
editruntcl
attachit s2008 /irisdata/2008symp/2008symp.sqg3

Figure 9. GEB Bootstrap

Page 10

	GEB: SQLite in Tcl/Tk in SQLite
	Abstract
	Background
	History (showsqlite)
	Upgraded Display (showtable)
	Stand-alone Functions
	Execute SQL/Tcl
	Run a Table
	Import/Export
	Convert between Version 2 and Version 3

	Putting the Program in the Database File
	Program Organization
	Future Plans
	Potential Users and Licensing
	Figures

