
 1

Abstract—The Experimental Physics and Industrial Control

System (EPICS) is a control system in wide use in the control
systems of accelerator laboratories across the world as well as in
large-scale particle physics experiments. This paper will describe
a Tcl package that provides access to EPICS control systems and a
set of widgets that allow user interfaces to EPICS systems to be
easily constructed. The extension will be compared and contrasted
with the et_wish EPICS aware extended wish, and a justification
for choosing to write a new extension will be given.

I. INTRODUCTION AND OUTLINE

The Experimental Physics and Industrial Control System
(EPICS)[1] is a distributed control system that is heavily used
in nuclear and high energy physics experiments and
accelerators. Los Alamos National Laboratories and Argonne
National Laboratories originally developed EPICS and the
EPICS organization supports further development and
international use.

The National Superconducting Cyclotron Laboratory at
Michigan State University is the leading accelerator laboratory
in unstable heavy ion research in the United States and one of
the leaders in the world. Our accelerator and beam-line
controls are built around the EPICS control system. Several
facility experimental devices, such as the S800 spectrometer
[2], also feature EPICS in their slow control paths.

Recently several factors pushed me to investigate the use of Tcl
to produce applications that interface with the NSCL EPICS
system:

1. In my role as the software lead for the data acquisition
system, I was getting an increasing number of requests
to interface the data taking system in a read-only
manner with data that could be obtained from the
EPICS system. These requests ran the gamut from on-
line monitoring of EPICS system channels during
experimental data taking to inclusion of time varying
control system parameters in the main event flow.

1 The National Science Foundation under grant number PHY0606007

funded this work.

2. The Gas Stopping Cell[3], an experimental system,
which performs high precision mass and half-life
measurements on unstable nuclei could be run more
efficiently and more effectively if it had available to it
a system that sequenced several data taking runs while
making new controls settings for the beam-line and gas
cell EPICS parameters between runs.

3. The accelerator controls development group at the
NSCL, after several years of “Windows only” console
subsystems was looking for ways to create portable
console applications.

4. The accelerator operators were looking for ways to get
faster turn-around for desired changes in console
applications and new console application
development.

The remainder of this paper is organized as follows:

• Section II will provide a brief structural summary of
EPICS and how EPICS control systems are typically
implemented in the field.

• Section III will describe past work on interfacing
Tcl/Tk to EPICS, why we did not choose to use prior
art and what our requirements and desirements for an
EPICS interface package were. A discussion of how
we would structure our software is given as well.

• Section IV breaks in to three sub-sections. The first
describes the low-level compiled extension that
provides Tcl/Tk applications with access to EPICS
control system channels. The second describes a set of
Tk mega widgets that can be used to meet some
control system needs irrespective of the underlying
control system. The third describes a set of “EPICS
aware” mega widgets that can be used to quickly build
control system applications in Tcl/Tk.

• Section V will describe the status of the software, its
level of adoption amongst the various development
groups at the NSCL, and availability for outside use.

Tcl/Tk Tools for EPICS Control Systems.

R. Fox
National Superconducting Cyclotron Laboratory1

Michigan State University
East Lansing, MI 48824-1321

 2

II. INTRODUCING EPICS

EPICS is a distributed control system that was originally
developed collaboratively at Los Alamos National Laboratories
and Argonne National Laboratories in 1989 as an off-shoot of
the Ground Test Accelerator (GTA) control system at Los
Alamos National Labs. EPICS has been adopted to control
over 30 accelerators world wide, several large detection
systems, telescopes and is also in use in several commercial
applications/industrial applications. [4].

In the initial versions of EPICS, work was allocated to I/O
controllers (IOCs), and console systems. The IOC systems at
the time were typically board level embedded products running
the WindRiver vxWorks Software[5]. As i386 computing
became increasingly powerful and cost-effective, EPICS IOC
software has migrated to these systems and can run on
Windows32, Linux, and Solaris86 operating systems.
Furthermore, for smaller systems, the line between the IOC and
console computer blurs since general-purpose computers are
capable of running elements of both components.

A typical EPICS deployment is shown below in Figure 1:

IOC nodes are attached to the hardware either directly or,
increasingly, via serial links and private subnets that they
gateway on behalf of the EPICS channel access protocol. As
more and more hardware interfaces are network capable, the
IOC role is increasingly that of a protocol translator. Console
systems run applications with which humans. The gateway
system servers two purposes:

1. It is an access point that can determine which systems
outside the EPICS control system are allowed to
access EPICS channels and how.

2. It does broad/multi-cast traffic filtering. The EPICS
channels (or process variables as they are called) are
not listed in a centralized database. Instead a
broadcast discovery protocol similar to ARP is used to
locate the node that serves a specific process variable.

The EPICS process variable is stored as an IOC resident
‘database record’. The name of the entry (e.g. ATHING) can
typically be read to retrieve some hardware value. Descriptive
information about ATHING may be found by reading other
fields of the ATHING record. For example, the engineering
units of ATHING are, by convention stored in ATHING.EGR.

The interesting thing about the EPICS channel access layer
from the point of view of the console application is that there is
no actual distinction, other than convention between accessing a
process variable that represents hardware and a process variable
that is some other field in the database record associated with
that hardware.

The IOC software operates by cycling through database records
calling handlers for each record that are intended to update the
record’s fields from the hardware and the hardware from the
record’s fields. Consider a simple example, a power supply.
The power supply has a request voltage and an actual voltage.
It an be turned on or off. It has a status that can describe its
state that might be any of on, off, or interlocked. A record for
this hypothetical power supply may have the structure shown in
Table 1 below:

Table 1 A Sample EPICS database record.

Field Meaning
PS1 Requested Voltage (write)

Actual Voltage (read)
PS1.EGR Engineering units of the requested voltage

(read; returns “Volts”).
PS1.STATUS Status of the supply (read; returns “On”,

“Off” or “Interlocked”).
PS1.REQ Requested voltage (read only)
PS1.ON Write 1 to turn on, 0 to turn off.
PS.TYPE Type of record e.g. PSUPPLY

Note that by convention the name of the record is written to set
the device and read to retrieve the actual value of the device.
The database driven structure of EPICS provides several
advantages.

1. Having created a record structure, and driver new
instances of a power supply can be created by simply
creating new database records and connecting them to
the driver software (record fields not shown could
provide actual hardware connection information to the
driver, e.g. the serial port device the power supply was
connected on, or a TCP/IP address).

2. Having described a power supply controller via a
database record, only a new driver needs to be written
to control a new type of power supply with similar
application layer control characteristics.

3. Changing the hardware allocations of specific named
devices is not a matter of changing software, but only

IOCIOC IOCIOC IOCIOC IOCIOC

…

…

gateway

Figure 1 A typical EPICS Deployment.

 3

of changing the database and can be done while the
system is running.

4. EPICS supports creating new devices by creating new
database record types (structures), creating instances
of them and device driver software to support them.
Database records are described via a database meta-
language that is used, in con junction with database
definitions, to create record instances.

Each channel has a ‘native data type’, but all channels can be
read as a string. This is a concept that is similar in nature to the
dual ported Tcl_Obj used in the Tcl internals and API, however
the ‘native type’ port is fixed and cannot be changed.
Nonetheless, to some extent, software can be written that reads
and controls EPICS channels that adhere to the Tcl EIAS
(Everything Is A String) philosophy. It is also possible to
obtain a process variable’s ‘native data type’ and we will show
in Section IV how we use that in the epics package to perform
more accurate string conversions that EPICS itself does.

III. T CL AND EPICS IN THE PAST

Research indicates two existing Tcl/Tk packages that support
EPICS. These are ET[6], and IT[7]. These are both bundled in
the EPICS caTCL extension. It turns out that IT is simply an
extension of ET that can export data to the IDL data
visualization and analysis tool[8]. I will therefore not discuss
and analyze the strengths and weaknesses of IT as they are
identical to ET with the additional requirement that IDL be
available to make full use of its capabilities.

ET is delivered as an extended wish shell, et-wish. Et-wish
provides the command [pv] . The [pv] command is an
ensemble that allows Tcl applications to link Tcl variables to
EPICS process variables, set process variables from EPICS
channels and check the status of the connection between EPICS
channels and the underlying application variables. There are
some drawbacks however:

• Et is not a loadable package and requires a special shell;
et-wish

• Et requires blt and internally uses its vector type.
• Et usage is not very Tclish in particular:

o Tcl variables are type sensitive giving the
impression that Everything Is Not a string

o Tcl linked variables are not automatically
updated by et-wish but must be manually
updated and manually set.

o Process variables themselves don’t actually
have a good object model. There’s the PV
command, and there are variables linked,
there’s no direct handle for a process variable
that is being manipulated by the program.

• Et does not interface well with Tk, (because of the need
to manually update linked variables)

• ET forces application designers to build widgets
appropriate to control rather than providing a library of
control widgets.

I felt the drawbacks of et-wish were sufficient to justify the
effort required to build a new Epics interface to Tcl/Tk.
Furthermore, since I already had epics channel access layer
encapsulating classes, I felt I had a good leg up on that
development process by interfacing these classes to Tcl through
my Tcl++ partial encapsulation of the Tcl API.

The vision I had for Tcl/Tk support for EPICS is shown in the
software-layering diagram below:

Table 2 below is a key to the boxes in the figure in figure 2.

Table 2 Key to figure 2.

Item Meaning
CA The EPICS Channel Access

library.
Tcl/Tk&stubs lib The Tcl API and the stubs

library that provides a version
independent front-end to it.

Epics/Tcl A new loadable package that
is stubs enabled providing
Tcl-ish access to EPICS
process variables.

Interpreter A Tcl interpreter instance
Controlwidget Pure Tcl widgets for arbitrary

control applications.
Epicswidgets EPICS aware mega widgets.
Application A console application.

In the next section, we will describe the red components of this
diagram.

IV. NSCL SUPPORT FOR EPICS AND TCL/TK

A. The epics package

CA Tcl/Tk & stubs lib.

EpicsTcl controlwidget

epicswidgets
Application

Interpreter

 4

The epics package is about 9000 LOC of C++ software, much
of it (4300 LOC) the TCL++ wrapping of the Tcl API, and
much of the rest (3000 LOC) a previously written C++
wrapping of the EPICS channel access layer (ca). The epics
package (epicstcl for short) provides an object-oriented
interface to EPICS process variables. This support is
summarized in Figure 3 below:

The epicschannel command creates a new epics Process
Variable object and a Tcl command that has the same name as
the process variable. Operations on the process variable are
performed via that command, which, as Figure 3 shows is an
ensemble command.

Prior to describing how the package operates, I want to make a
slight digression to describe some of the support epicstcl
provides for ‘programming in the large’. Programming in the
large support considers the fact that almost certainly the same
process variable will appear in different places on the same
application simultaneously. This can lead to code sequences
separated physically and temporally by a large distance like
those shown below:

epicschannel achannel
achannel link achannelVariable1
…
epicschannel achannel
achannel link achannelVariable2

…
achannel delete
…
achannel delete

Which raise questions like:

1. What should the second epicschannel command on
the same process variable as the first do?

2. What should the second link subcommand on the
same process variable do?

3. What should delete do?

4. What should unlink do in the event a process variable
is unlinked from its Tcl variable?

Good support for programming in the large requires that “the
left hand not have to know what the right hand is doing” so that
tight module and user interface coupling can be avoided.
Therefore three design decisions were made to support
programming in the large:

1. Process variable objects have a reference count and
the epicstcl package internally maintains knowledge of
the process variables that have been created.
Duplicate process variables don’t actually create
another object, but instead increment the reference
count. The delete operation similarly decrements the
reference count and only deletes the underlying
channel object/command when the reference count
reaches zero.

2. The mapping of process variables to Tcl variables is
one to many. That is more than one Tcl variable can
be simultaneously linked to an epics process variable.
Changes to the process variable are reflected in all
linked Tcl variables, and a Tcl scripted change to any
linked variable will cause a set to the underlying
process variable (which eventually will cause a change
in the value of the process variable that in turn will
update the value of all the other linked Tcl variables).

3. Linked Tcl variables also have a reference count and
epicstcl maintains internal knowledge of these links in
a manner similar to the channel objects themselves.
This supports a channel being linked to the same Tcl
variable more than once.

The EPICS ca library provides ‘channel access’. Ca allows
access to EPICS process variables. In addition to allowing the
application to poll the current values of a process variable, and
to set new values, EPICS has an event model that supports
notifying the application when an epics variable has
“significantly changed”. The significance of a change can be
defined in the EPICS database records for a process variable.

EPICS performs this notification via threading, and the
notification may occur in an arbitrary thread relative to the
thread that requested the notification. It is therefore important
to get the threading model right with respect to Tcl in order to
avoid thread related failures in the Tcl interpreter.

Tcl/Tk supports an apartment-threading model. This model
states that:

• A thread can have many interpreters.
• Each interpreter can for the most part be interacted

with only in the thread that created it (each interpreter
has only one thread).

• API Functions exist to post events to the event loop of
an interpreter running in an arbitrary thread.

epicschannel pvname
pvname get ?count?
pvname set value-list ?format?
pvname link tclVariableName
pvname unlink tcvVariableName
pvname listlinks ?pattern?
pvname updatetime
pvname values
pvname size
pvname delete

Figure 3 epicstcl Command summary.

 5

On the other hand, it is not possible to predict which
application thread will receive an EPICS update notification.
Therefore the epicstcl loadable package updates Tcl variables
by posting an event to the interpreter that owns that variable
rather than directly updating the variable itself.

Initial versions of the package always read the string version of
the channel in keeping with Tcl’s EIAS philosophy. Users
discovered, however that EPICS’s floating point to string
representation conversion functions were inadequate, especially
for process variables containing small values. For example, a
beam current monitor that was displaying a few nano-amps of
beam (e.g. 5x10-9 nA) would be converted to the string
“0.000”. Therefore, the epicstcl package reads each process
variable in its native type. When the channel connection event
is processed, a native-type to string converter is associated with
the native data type.

The threading model of EPICS also leads to some interesting
edge cases. Consider the script:

epicschannel achannel
achannel delete

The first command expresses an interest in the EPICS process
variable achannel. This:

1. Creates a new Channel object in the extension. The
channel object requests an attachment to the process
variable named achannel.

2. Creates the Tcl command [achannnel]
3. In a separate thread, EPICS will notify the Channel

object that the process variable was successfully
located and attached. This happens asynchronously.

4. Once the channel has been successfully attached, the
channel object can express an interest in update
notifications.

5. Update notifications can then proceed asynchronously
and in an arbitrary thread.

The second command declares the application is no longer
interested in the channel. This:

1. Detaches the channel from EPICS
2. Deletes the [achannel] command.
3. Deletes the channel object

The script shown will typically delete the channel object before
the asynchronous notification that the channel has been
connected and, often, prior to the actual connection itself. Thus
care must be taken to cancel these notifications or to discard
notifications for channels that have been already deleted.

Similarly each low-level channel object has associated with it a
semaphore object (implemented on Unix-like systems as a

pthreads semaphore and on Windows systems as a Critical
Section) to ensure synchronization of internal data structures
within the multiple threads that may be executing in an object.
These are wrapped in objects that acquire the synchronization
primitive on construction and release on destruction so that
code of the form:
 {
 CriticalRegion lock(id);
 ….
 }

Will maintain the appropriate lock discipline even in the
presence of C++ exceptions. Tcl semaphores are not used
because this level of the code is intended for re-use in non-Tcl
applications.

B. The controlwidget system independent widgets.

While EPICS is the dominant device control system at the
NSCL, there are other control systems in simultaneous use.
These include various small Labview systems as well as some
ad-hoc systems for special purpose applications.

The Widget support for building console applications is
therefore broken into two layers. The lowest layer provides
some re-usable widgets that are independent of the control
system. These operate very much like normal Tk widgets in the
sense that they may have –variable options or set/get methods
that some control system aware software can use to manipulate
the widget appearance to correspond to the appearance of some
control system parameter.

Snit[9] was used to create these widgets. I have had many
pleasant experiences using Snit as a mega widget framework,
and this project was no exception.

The following widgets were written:

• Led – An indicator that simulates a light.
• Meter – A vertically oriented rectangular meter.
• RadioMatrix – A rectangular array of radio buttons

that can be used to chose one possibility from several.
• TypeNGo A type in widget coupled with a button that

commits the value in the entry to the control system.
The entry supports validation that is invoked when the
button is clicked. This allows the application to be
certain that a variable that expects a number gets a
number e.g.

To give a sense for how these widgets work, Figure 4 below
shows a test script for the meter widget. In this case, the
‘control system’ is just a proc that runs every 100ms and jitters
the meter value.

 6

C. The controlwidget EPICS aware widgets

The ultimate intent of our work is to make it easy to create
control system applications for EPICS at the NSCL. To do this
I have also written a set of EPICS aware widgets. In most
cases, EPICS awareness means that these widgets have a
–channel option that binds the widget to display/control a
specific process variable in the EPICS control system.

The EPICS aware widgets have been implemented as a mix of
snit::widget and snit::widgetadaptor ‘classes’. Where

Figure 4 Test script for meter.

possible, they are implemented on top of the widget set
described in part B. of this section. For example, there is an
epicsMeter widget. This is implemented in terms of the meter
widget described in section B.

The EPICS aware widgets that have been written include:

• EpicsButton: provides several types of epics aware
buttons including a pair of buttons for e.g. on/off a
single button that can toggle on/off states, and a button

that can a process variable to an arbitrary value when
clicked.

• EpicsEnumeratedControl: provides a wrapping of
the RadioMatrix widget described in part B of this
section.

• Epicsgraph: provides a wrapping of the BLT graph
widget that allows one to graph the time evolution of
one process variable against the time evolution of a
second (see also Epicsstripchart)..

• EpicsLabel, EpicsLabelWithUnits: provides a read-
only display of a process variable or a process variable
with its engineering units.

• EpicsLed: an EPICS aware wrapping of the Led
widget described B. above.

• EpicsMeter: an EPICS aware wrapping of the meter
widget described above.

• EpicsBCMMeter: an EPICS aware wrapping of the
meter widget along with range controls suitable for
use with NSCL Beam current monitor devices.

• EpicsPullDown: an EPICS aware pull down menu
that can present a set of choices for the value of a
process variable.

• EpicsSpinBox: an EPICS aware spinbox.
• EpicsTypeNGo: an EPICS aware wrapping of the

typeNGo widget.
• EpicsStripChar:t an EPICS aware wrapping of a

BLT stripchart widget that allows time series data for
epics process variables to be displayed.

V. SOFTWARE STATUS AND LEVEL OF ADOPTION

The software is currently stable at version 1.4-001. This version
has been tested on Windows XP,2000 Linux and MAC OS-X. I
have used this software routinely in my work providing EPICS
interfaces to the experimenters. It is provided on the conference
CD along with some installation instructions. See the software
subdirectory of the CD subdirectory for this paper.

I have not been able to interest the NSCL controls group in this
software. Instead they have embarked on an ambitious project
to build portable user interfaces using Qt and C++. They
estimate this to be a multi-year project, however in the
meantime, laboratory administration has given the go-ahead to
accelerator operators with software development experience to
use this to develop their own user interface software and they
have done so with great enthusiasm.

The epicstcl package and associated mega widgets have served
as an enabling platform for the NSCL accelerator operators to
get functioning control panels that meet their needs with better
turn-around times than they have had in the past, and without
waiting for the completion of the Qt/C++ application

package require meter
namespace import controlwidget::*

set metervar 0.5

set jiggleMax 5
set jiggleAmount 0.1

meter .meter -variable metervar \
 -from -1.0 -to 1.0
pack .meter

proc jiggle ms {
 global metervar
 global jiggleCount
 global jiggleMax
 global jiggleAmount

 after $ms [list jiggle $ms]

 set jiggle [expr \
 rand()*$jiggleAmount - \
 $jiggleAmount/2.0]

 set metervar [expr $metervar + \
 $jiggle]

}

jiggle 100

 7

framework described in the previous paragraph. The project
has yielded benefits both for our experimental user group and
for the operations program at the NSCL.

VI. REFERENCES

[1] http://www.aps.anl.gov/epics/index.php
[2] http://www.nscl.msu.edu/tech/devices/s800
[3]
http://www.springerlink.com/content/r3224712r7n17864/fulltex
t.pdf
[4] http://www.aps.anl.gov/epics/projects.php
[5] http://www.windriver.com/products/platforms/
[6] Bob Daly
http://www.aps.anl.gov/epics/EpicsDocumentation/Extensions
Manuals/TclTk/et.tcltk.html
[7] Bob Daly
http://www.aps.anl.gov/epics/EpicsDocumentation/Extensions
Manuals/TclTk/it.tcltk.html
[8] http://rsinc.com/idl/
[9] http://en.wikipedia.org/wiki/Snitsnit

