
An Interactive Compiler Development System

Gary S. Tyson, Robert J. Shaw and Matthew K. Farrens
Division of Computer Science

University of California, Davis, CA 95616
email: tyson@cs.ucdavis.edu, tel: (916) 752-7004

Abstract

An interactive compilation environment has been
developed to facilitate the rapid prototyping of machine
dependent code optimization strategies for the Decoupled
Processor Design project under development at University
of California, Davis. This paper describes an interactive
graphical optimizer based on the Tcl and Tk libraries. An
overview of the optimizer is presented along with some
motivation for the unique features it provides.

1. Introduction

The development of high performance architectures
requires considerable interaction between the architectural
specification and the machine specific optimizations per-
formed to exploit the capabilities of the architecture.These
optimizations often expand on more general techniques
found in current compilers [Stal].However, few tools exist
to aid in the integration of new and existing optimization
techniques. We hav e developed anInteractive Graphical
Optimizer (IaGO)to facilitate the construction of a high
performance code optimizer for new target architectures.
This system allows for much greater control of the applica-
tion of optimization techniques by incorporating a Tcl based
script language into the code optimizer. In addition, the use
of Tk to generate an interactive interface between the com-
piler developer and the internals of the optimizer allows for
new code optimization strategies to be appliedon the fly.

2. Motivation

New high performance architectures are currently
being developed at numerous university and corporate
research centers. At UC Davis, we are investigating new
architectural approaches that exploit the implicit Instruc-
tion-Level Parallelism (ILP) found in conventional sequen-
tial programs (in our case,C source programs).The
increased capacity found in these new architectures requires
more sophistication on the part of the compiler to realize an
improvement in performance.Generally, the more complex
the architecture, the less applicable current compiler tech-
nology becomes in the generation of efficient code.We
have dev eloped a set of tools to facilitate the design and
analysis of theMultiple Instruction Stream Computer
(MISC) [TyFP92] architecture and simplify the construction
of new optimization strategies suited to the unique

capabilities of this architecture. This paper briefly discusses
one of these tools, IaGO, which provides an interactive
compilation environment used to develop prototype code
optimization strategies for MISC and other new architec-
tures.

The MISC architecture uses multiple asynchronous
processing elements to separate a program into instruction
streams that can be executed in parallel. Unlike other

MIMD 1 architectures, MISC has been designed to separate
a task into multiple, finely interleaved instruction streams
which cooperate to execute a sequential task; this is the
same ILP exploited by Superscalar architectures such as
DEC’s Alpha processor [Site93].The partitioning of the
task requires the compiler to identify both independent and
dependent operations and to assign them to different pro-
cessing elements. The separation of instructions to exploit
ILP is a relatively new strategy and compiler support is
unavailable. IaGOallows new optimization strategies to be
attempted with minimal delay and with much greater flexi-
bility than current optimizers — which generally use com-
mand line arguments to specify which optimization tech-
niques should be tried.Among the questions that we wish
to study are optimal strategies for instruction stream separa-
tion, tradeoffs in register allocation and instruction schedul-
ing, and methods for hiding operational latencies by con-
trolling the asynchronous entry of processing elements into
basic blocks.

IaGO provides two key advantages over alternative
compiler models. First, the application and ordering of
optimization methods can be specified by a command script,
allowing alternative schemes to be attempted without regen-
erating the compiler. This is important because the relation-
ship among code transformations is complex and the effects
of architectural dependencies can exclude particular trans-
formations or particular orderings of optimizations.Sec-
ond, with the use of Tk, the compiler developer can interact
with the internals of the optimizer during the compilation
process. Codecan be hand optimizedby allowing the
developer to manipulate the internal representation of the
program (e.g. rewrite the intermediate language program
description or modify dataflow information). Thisallows

1 Multiple Instruction / Multiple Data



new optimization strategies to be evaluated without the
necessity of coding them in C or as an optimization script.

3. Compiler Overview

Once we decided to develop a compiler model for
MISC, a study was made of existing compilers and thevery
portable C compiler (vpcc)[BeDa91] was chosen as the
base model for IaGO. The design of vpcc, ongoing at the
University of Virginia, is an extension of the portable C
compiler developed at Bell Labs. The vpcc compiler is sep-
arated into two phases: the parser or front-end and the code
optimizer or back-end (see figure 1).

Code
Object

Internal

RTL

Dependency

Graph

Data-flow
Analysis

Optimization
Routines

Tk
Routines

Display
Routines

Instruction
Scheduling

Front End

Lexical Analysis
Tcl Shell

RTL

Code Expander

Semantic Analysis

Back End (IaGO)

Code Generation

Abs-code

Figure 1: Overview of the vpcc/IaGO compiler

The front end of the compiler parses C source code
and generates naive (but correct) code for a simple abstract
machine (Abs-code). The code expander translates the
abstract machine code intoRegister Transfer Lists (RTLs);
an RTL is a machine specific representation for the target
machine specified in a machine independent form.This
independent form allows dataflow analysis and many opti-
mization routines to operate in a machine independent man-
ner. Once an RTL description of the program is generated,
it is written to a file and the optimization phase is initiated.
A compilation driver program is responsible for coordinat-
ing the execution of the parts of the compiler — including
pre-processing, assembly and linking operations.

The second phase of the vpcc compiler has been mod-
ified to support IaGO. IaGO consists of a Tcl interpreted
shell, a set of routines to perform dataflow analysis, code
optimization and graphical display. When IaGO is invoked

during the compilation process, a shell script is provided to
the interpreter in addition to any command line arguments
(provided by the driver program). Normaloperation of
IaGO starts with a series of commands (specified by the
script file) to load the intermediate RTL description of the
program, perform dataflow analysis to construct a depen-
dency graph and apply whichever optimization transforma-
tions to the code are specified by the script. Once optimiza-
tion is complete, instruction scheduling is initiated to gener-
ate a final object (assembly code) listing of the program.
The driver program can continue with assembly and linking
phases if requested.

4. Optimization Script Language

The first component of the IaGO system is an IaGO
command shell. This command shell is simply a Tcl inter-
preter augmented with optimization and display routines.
Command line arguments received from the compilation
driver determine the location of the IaGO script controlling
the optimization process.This will usually involve specify-
ing an IaGO command script on the vpcc command line.
Application of optimization routines is controlled by the
script; RTL files will be opened, contents read, optimiza-
tions performed and assembly code generated by invoking
various Tcl and IaGO procedures. An interactive shell can
also be specified for simple textual interaction between
IaGO and the developer.

Most IaGO routines operate on a global RTL depen-
dency graph; allcode translations maintain the same inter-
nal format, so there is no required ordering of optimization
operations. Thisprovides the command script with (almost)
complete freedom in scheduling code translations.In addi-
tion to the optimization routines, IaGO registers several data
conversion routines to allow access to the internal data
structures by the command interpreter. This allows the
command scripts to access internal structures as shell vari-
ables and to determine control flow of the optimization pro-
cess accordingly. The IaGO command language then has
the full programmability found in the Tcl language.Itera-
tion can be performed to control the application of any of
the optimization (or dataflow analysis) routines. More
aggressive scheduling of transformations can then be
attempted without sacrificing correctness of target code or
determination (guaranteed compiler optimizationtermina-
tion).

5. Interactive Optimization

Another useful capability of the IaGO system is its
ability to interact with the compiler developer to generate
more efficient code or to develop new optimization tech-
niques. Amenu driven graphical interface can be created
(from the IaGO command shell) to provide detailed infor-
mation about the internal state of the optimization process
and to accept commands input by the developer.



When using this graphical interface, the structure of
the program is viewed as a set of basic blocks,specified in
RTL format, displayedin Tk listboxes. Controlflow is dis-
played as directed arcs between the basic block (on a Tk
canvas). This representation of control flow can be aug-
mented with information regarding data dependencies, reg-
ister usage or higher level semantic structures such as loops.
Many of the display characteristics can be specified by the
command shell allowing more of the internal representation
to be viewed.

The primary mechanisms for direct manipulation of
the compilation process are Tk menus and a text editor.
Dataflow modifications are made by manipulating the items
on the canvas. RTLs can be directly manipulated by invok-
ing a text editor on the RTL representation of the code in a
basic block. This interaction between the compiler devel-
oper and the optimization routines allows for more sophisti-
cated transformations to be applied. Compilers have little
difficulty with applying global transformations (e.g.global
register allocation or code motion) across the entire scope of
a function. Peoplehave far more difficulty applying these
types of transformations.However, people are proficient at
determining semantic information about the application.
This often allows human intervention to avoid overly con-
servative scheduling decisions by the optimizer. An exam-
ple of this is the analysis required to guarantee that no mem-
ory (aliasing) hazards exist in the schedule.Often a person
can provide this guarantee by examining the application
when the compiler cannot guarantee this with a detailed
analysis of the low lev el semantics found in the intermediate
code.

The ability to quickly evaluate new optimization
strategies by interactively applying transformations provides
the compiler developer with a powerful tool for studying the
underlying characteristics of advanced architectures.

6. Future Research

Although we have presented IaGO as a compiler
writer’s tool, it can be applied to many other programming
projects with only modest alterations.For instance, the
multiprocessing community accepts that a truly general-
purpose parallel architecture will never exist, and conse-
quently, the programmers of such machines must become
intimately familiar with their particular architectures.If
they do not, they fail to harness the full power which the
machine has to offer. Even today, in supercomputer centers
such as the Lawrence Livermore National Laboratory,
efforts to fine tune applications consume a large portion of
the programming professionals. For these individuals, a tool
such as IaGO would allow much greater interaction between
the compilation model and themselves. Rather than a one-
way conversation with the compiler through compiler direc-
tives embedded in some parallel dialect of Fortran or C,
IaGO would allow the programmer to interact with the

optimization process directly. The compiler performs the
computations it does best (e.g. dependency analysis and
global register allocation), while the programmer provides
the advice that the software can not determine with certainty
(the absense of pointer hazards and function side-effects).
IaGO allows the programmer to communicate higher-level
aspects of the program design to the compiler — aspects
which are all but invisible at the level of basic blocks and
RTLs. Again, the fact that detailed architectural knowledge
is required to use IaGO effectively in this way is not a draw-
back because such knowledge is needed anyway by the
application tuners working on high-performance platforms.

Because of the ease of programming that Tcl pro-
vides, several additions to IaGO’s displayed information are
possible, all of which serve to enrich the nature of this bidi-
rectional programmer/compiler interaction. An obvious
extension is to include profiling information so that the pro-
grammer sees clearly which basic blocks are crucial to high
performance. Similarly, common compiler notions such as
live ranges, natural loops, and use-def chains are all easily
incorporated into IaGO, allowing the programmer to per-
form high-level code reorganization to promote the com-
piler’s skill at code motion and register allocation.

IaGO has displayed great benefit in the development
of new optimization strategies for the MISC processor. We
believe that the capabilities found in an interactive compila-
tion environment can be applied to a more general field of
programming. Oncethe development of IaGO has matured
in its existing configuration, we wish to port it to a compiler
with greater availability such as gcc.

References

[BeDa91] M. E. Benitez and J. W. Davidson, “Code
Generation for Streaming: an Access/Execute
Mechanism”, Proceedings of the Fourth
International Conference on Architectural
Support for Programming Languages and
Operating Systems, Santa Clara, CA (April
8-11, 1991), pp. 132-141.

[Site93] R. L. Sites, “Alpha AXP Architecture”,
Communications of the ACM, vol. 36, no. 2
(February, 1993), pp. 33-44.

[Stal] R. M. Stallman,Using and Porting GNU CC,
Free Software Foundation, Inc. 1991.

[TyFP92] G. Tyson, M. Farrens and A. Pleszkun,
“MISC: A Multiple Instruction Stream
Computer”, Proceedings of the 25th Annual
International Symposium on
Microarchitecture, Portland, Oregon
(December 1-4, 1992), pp. 193-196.


