
Ak: An Audio Toolkit for Tcl/Tk

Andrew C. Payne

Digital Equipment Corporation
Cambridge Research Lab

Abstract

Ak is an audio extension for Tcl built on top of
the AudioFile System. Ak provides mechanisms for
file playback, recording, telephone control, and synchro-
nization.

1 Introduction

AudioFile is a network-transparent, device inde-
pendent audio system [1]. AudioFile is modeled after
the X Window System: servers run on systems with au-
dio hardware, and a library of client routines provide
a programming interface for applications. The library
includes routines to play and record audio samples, to
manipulate devices (gain controls, input/output enables),
and to control telephone devices. AudioFile also imple-
ments events, such as ring, hookswitch, and tone detec-
tion.

This paper describes work in progress on Ak, a
Tcl audio extension that is built on top of AudioFile.
Ak is designed to be simple, yet general and flexible.
Simple applications should be easy to write, but sophis-
ticated applications should still be possible. Ak provides
the basic functions, such as playback and recording, as
well as a convenient framework for implementing new
functions. Ak also provides a powerful mechanism for
clients that need synchronization.

Ak is similar to the PhoneScript Tcl extension [2],
but Ak is designed to be much more general purpose
and not restricted to just telephone applications. The
remainder of this paper describes Ak’s programming
interface and implementation.

2 Basic Operations

Ak has three basic abstractions: server connec-
tions, device contexts, and requests. Server connections
are to AudioFile servers on other machines (or the local
machine). Device contexts represent a particular device
on a server, with a set of context attributes (playback
and record gain, sample type, little/big endian data). Re-

quests are operations, such as file playback or recording,
that are executed in some device context. This section
describes the Tcl commands that implement these ab-
stractions.

2.1 A Word About Time

First, it is important to mention the role time plays
in AudioFile and Ak. Each device maintains a clock:
an integer counter that increments once per sample pe-
riod. Clients are responsible for explicitly specifying
the time of record and playback requests. By specifying
the timing appropriately, clients can generate continuous
playback and record streams. Consider a playback ap-
plication, for example, that reads blocks of 100 samples
from a file and sends them to the audio device. If the
application plays a block of samples at time t, the next
block would start at time t + 100. A record application
would schedule requests in a similar fashion to obtain a
contiguous stream of samples.

Exposing time to clients greatly simplifies many
synchronization problems. Since the clients can control
exactly when the sound is going to emerge, they can
implement whatever level of synchronization needed.
Clients can read the times and synchronize the audio
clock with other clock domains, such as the X server or
other audio devices.

AudioFile’s model of device time is carried through
to Ak: all requests are scheduled in the device time for
the audio device. Times are represented using conve-
nient string descriptors. For example, the string “now”
represents the current time. Offset modifiers are permit-
ted, with units in samples or time intervals. For example,
“now +5s” refers to a time 5 seconds from the current
time. Ak automatically converts the time offsets into
sample counts, based on the device’s sampling rate.

2.2 Connections, Contexts, and Requests

The audioserver command opens server con-
nections. It takes two arguments: the name of the server
connection and the hostname of the server. For example,

1

audioserver main "north-fork:0"

opens a connection named main to the server on the
machine north-fork. The name of the server con-
nection is registered as a new Tcl command, which is
used to manipulate the connection.

Once the connection is established, device con-
texts may be created using the server command. For
example, this command:

main context room-device -device 1

creates a context named room-device for audio de-
vice 1 on the server specified by main. The context
name is registered with the Tcl interpreter as a new com-
mand.

The context command has a number of options to
query and manipulate the device. There are options to
retrieve the sample rate, sample type, input and output
configurations, and other information about the device.
For telephone devices, there are commands to manipu-
late the telephone hookswitch and dial the phone. This
example takes the telephone off hook and dials for help:

phone-dev hook off
phone-dev dial "911"

Requests are created in device contexts. Request
types include playback, record, tone generation, pass-
through (sending audio between two servers), and ac-
tion (a command scheduled to execute at some future
time). Requests are created using the context create
command, which returns a unique request-id that can be
used to manipulate the request after it is created. Here
is an example of a play file request:

set req [room-device create play \
"hello.au" -start {now +5s} \
-stop {now +6s} -offset {+10s}]

This example schedules a request to play one second of
audio from the file “hello.au”, starting in 5 seconds,
from an offset 10 seconds into the file. The returned
request id is stored in the variable req. The play request
has a variety of options, including a way for commands
to be executed at the beginning, the end, and on regular
tick intervals.

This is an example of an action request, which
schedules a command to be executed 5 seconds from
now:

room-device create action \
"puts stdout BANG!" -at {now +5s}

Note that actions are scheduled using the audio device’s
clock. This provides a simple, yet powerful, mecha-
nism for synchronizing to audio. For example, actions
could be used to update a screen animation in sync with
playback audio.

Once created, requests can be manipulated with
the reqconfig command. For example, this com-
mand halts the previous play request “mid-stream” by
changing the stop time:

room-dev reqconfig $req -stop {now}

Meaningless configuration requests, such as modifying
the start time for a request that has already started, gen-
erate an error.

2.3 Events

AudioFile devices may generate events that are
sent to interested clients. Ak allows commands to be
bound to events in a device context. This example picks
up the phone whenever it rings (phone-dev is a context
for a telephone device):

phone-dev bind <RingStart> \
"phone-dev hook off"

Ak performs substitutionson the bound command before
it is executed. For example, for the <DTMFStart>
event (generated when a Touch-ToneTM is detected),
the string ‘%d’ is substituted with the keyed digit.

3 Implementation

Currently, Ak consists of about 2500 lines of C.
About 2000 lines are for general routines and common
code. The remaining 500 lines implement the play re-
quest. The implementations of the other request types
are in progress.

Ak’s request types are implemented in a flexible
manner, much like Tk’s canvas item types. A type table
contains an entry for each request type, with informa-
tion including pointers to procedures to implement the
basic request operations: create, configure, and delete.
Adding new types is straightforward.

Ak hides many of the details of the underlying
implementation. For example, most AudioFile servers
buffer only about four seconds of audio. Therefore, a
large play request must be broken into smaller chunks
that get written to the server at regular intervals. Simi-
larly, a large record request would have to read samples
from the server at regular intervals.

To simplify the implementation, Ak provides a

2

scheduler that allows procedures to be executed at ar-
bitrary audio times. For example, a playback request
might schedule an update task to run every 1000 sam-
ples. Having the scheduler run in audio time hides details
like the sample rate and clock drift. The scheduler uses
a priority queue, based on device audio time. For each
device context, an update task reads the next item from
the queue, executes it, and reschedules the next update
using Tk’s timer routines.1 The update task fires at least
once a minute, even if there are no tasks to execute, to
compensate for any drift between the system clock and
the audio clock.

4 Conclusion

Hopefully, Ak will do for audio what Tk has done
for X. Together, Ak and Tk provide a powerful and
flexible system for developing multimedia applications.
Ak is being used to implement a full-featured tape deck,
multimedia presentations and tutorials, and a telephone
inquiry system.

There is still a lot of work ahead. The major tasks
include:

� Finish implementing request types

� A tagging mechanism for requests (which will be
useful for manipulating whole sets of requests at
once)

� More applications!

A beta-version should be finished this summer,
with a source kit available by anonymous FTP.

References

[1] Thomas M. Levergood, Andrew C. Payne, James
Gettys, G. Winfield Treese, and Lawrence C. Stew-
art. AudioFile: A network-transparent system for
distributed audio applications. In USENIX Summer
1993 Conference Proceedings. USENIX, 1993. To
appear.

[2] Stephen A. Uhler. PhoneStation, moving the tele-
phone onto the virtual desktop. In USENIX Winter
1993 Conference Proceedings, 1993.

Author Information

Andrew Payne is a research associate at Digital’s
Cambridge Research Lab in Cambridge, Massachusetts.

1This is the only major Tk subroutine used by Ak. Other Tk rou-
tines are used for signaling background errors and parsing arguments.
With suitable replacements for these routines, Ak could be made inde-
pendent of Tk.

His interests include signal processing, speech, and user
interfaces. He can be reached via e-mail at:

payne@crl.dec.com

3

