
back could just have one int argument, and the Call-

back Objecttype class could perform the mapping be-

tween the Tcl CmdProc signature and the simpler

member function signature, checking to make sure the

command was called with just one integer argument.

typedef struct {

Tcl_Interpreter *interp;

Callback *callback;

ClientData data;

} CmdProcData;

Tcl_Interpreter::CreateCommand

(const char *cmdName,

Callback *callback,

ClientData data,

Tcl_CmdDeleteProc *deleteProc)

{

CmdProcData* cpdata = new CmdProcData;

cpdata->interp = this;

cpdata->callback = callback;

cpdata->clientData = clientData;

CreateCommand(cmdName,

CallCmdProc,

(ClientData) cpdata,

deleteProc);

}

Figure 7: New CreateCommand Implementation

extern ``C''

static int CallCmdProc

(ClientData data,

Tcl_Interpreter *interp,

int argc,

char **argv)

{

CmdProcData* cpdata =

(CmdProcData*) data;

return

(*(cpdata->callback))

(cpdata->clientData,

cpdata->interp,

argc,

argv);

}

Figure 8: New CallCmdProc Implementation

class Callback

{

public:

virtual operator()

(ClientData data,

Tcl_Interpreter *interp,

int argc,

char *argv[]) = 0;

}

Figure 9: Callback Class

class Callback_Objecttype

: public Callback

{

typedef int

(Callback_Objecttype::*

CreateCommandCallback)

(ClientData data,

Tcl_Interpreter *interp,

int argc,

char *argv[]);

public:

Callback_Objecttype(

Objecttype *object,

CreateCommandCallback member)

: object(object), member(member) {};

operator()

(ClientData data,

Tcl_Interpreter *interp,

int argc,

char *argv[])

{

return (object->*member)

(data, interp, argc, argv);

}

}

private:

Objecttype *object;

CreateCommandCallback *member;

}

Figure 10: Callback Objecttype Class

extern ``C''

static int CallCmdProc

(ClientData data,

Tcl_Interpreter *interp,

int argc,

char **argv)

{

CmdProcData* cpdata =

(CmdProcData*) data;

return

((cpdata->object)->*(cpdata->member))

(cpdata->clientData,

cpdata->interp,

argc,

argv);

}

Figure 5: CallCmdProc Implementation

the C++ member pointer selector operator.

The interpreter class, which makes it possible to de-

�ne our own callback registration interfaces, and the

ClientData parameters to Tcl callback registration

routines thus make it possible to do what we want, i.e.,

to enable particular member functions of particular ob-

jects to be registered as callback routines. The above

implementation, however, is not as exible as we'd like.

To understand why, let's step back a bit and see ex-

actly what we want the CallCmdProc procedure to

do. We would like to make a call something like this:

return object->*member(...);

where object is an object of an arbitrary class and

member is an arbitrary member of that class (with

the proper signature). We accomplished the �rst objec-

tive by making object an instance of a subclass of the

Callback class, using multiple inheritance as necessary.

Unfortunately,membermust be a member function of

the Callback superclass, not of the dynamic class of ob-

ject. (Some compilers will allow (albeit with warnings)

a member function of the dynamic class of object to

be assigned to a member pointer variable statically de-

clared to refer to a member of the Callback superclass,

but this is not safe because the compiler cannot en-

sure that the dynamic class of object has the function

referred to by member.)

What this requires us to do is to create some �xed

number of virtual member functions in class Callback

which are re-implemented in each class that inherits

from Callback. A pointer to the associated member

function of the Callback superclass is then passed to

CreateCommand as the member argument. This is

not a nice solution, because we want to be able to have

an arbitrary number of callback routines implemented

class Tcl_Interpreter

{

...

void

CreateCommand(const char *,

Callback *,

ClientData,

Tcl_CmdDeleteProc *)

...

}

Figure 6: New CreateCommand Interface

by any given object (say, to implement multiple com-

mands or traces on multiple variables). We also would

like to be able to name our member functions in the de-

rived class appropriately, instead of having to use the

�xed names de�ned in the Callback superclass. It would

also be nice if we didn't have to make every class that

implements callbacks inherit from the Callback super-

class.

Our solution is to introduce a level of indirection.

We rede�ne CreateCommand to take a single call-

back object instead of an (object, member function)

pair (Figures 6 and 7). This callback object inherits

from a Callback superclass, and its job is to \know"

the real object and member function that comprise the

real callback routine and to perform the actual call-

back. The CallCmdProc procedure \calls" the call-

back (using the operator()(...)) operator (Figure 8).

It no longer needs to know anything about the type of

the member function that implements the callback.

The Callback and Callback Objecttype classes are

shown in Figures 9 and 10. The Callback Objecttype

constructor saves away the object and member function

that implement the callback. The Callback Objecttype

implementation of the operator()(...) operator actu-

ally calls the callback routine.

Note that a separate class of the form of Call-

back Objecttype is needed for each type of object that

implements callbacks and for each callback signature

type. Implementing a separate class for each object

type can probably be eliminated by using C++ tem-

plates. We have not yet used templates because they

are not universally available and we do not wish to in-

troduce portability problems.

Now notice that it is not really necessary for the

member function implementing the callback and the

operator()(...) operator of the Callback class to

have the same signature. This allows us to use the

Callback Objecttype class to convert the signature of

the Tcl callback routine (Tcl CmdProc) to some-

thing simpler. For example, we may create a Tcl

command that always takes only one integer argu-

ment. The member function implementing the call-

A Callbacks to C++ Code

Tcl and Tk have mechanisms for calling C procedures

from the Tcl interpreter. These C procedures are called

callbacks. For example, Tcl commands can be imple-

mented in C, and the C callback routines implementing

these commands can be registered with the Tcl inter-

preter using the Tcl CreateCommand routine. Reg-

istering a command with the interpreter associates the

callback routine with a command name. When the

command is interpreted, the corresponding C callback

routine is called.

The callback routine for command implementations

has a �xed signature (Tcl CmdProc) that de�nes the

result and parameter types of the callback routine. Tcl

variable reads and writes can also be traced, meaning

that a designated C callback routine is called whenever

the traced variable is read and/or written. The trace

callback routine signature (Tcl VarTraceProc) is dif-

ferent from the Tcl CmdProc signature.

In C++ code, we can use the \extern C" declaration

to de�ne C++ routines with C calling conventions that

can be used as callback routines called by the Tcl inter-

preter. For the C++ programmer, however, it is often

desirable to have the interpreter call particular member

functions of particular objects.

Tcl callback registration routines can be passed a

ClientData pointer which can point to a structure of

an arbitrary type. This ClientData pointer is then

passed back as an argument to callback routines. The

structure pointed to by the ClientData parameter can

be used to store pointers to the the object and mem-

ber function implementing a callback. Since we now

have a C++ interface to the Tcl Interpeter, we can add

our own registration functions to that interface which

substitute the object and member function parameters

for the C callback procedure pointer, as shown in Fig-

ure 3. Note that we have not replaced the original

Tcl CreateCommand interface; we have just used

operator overloading to make a new one with di�erent

parameters. The Callback parameter speci�es the ob-

ject, and the CreateCommandCallback parameter spec-

i�es the member function of the Callback class that im-

plements the command.

Our new CreateCommand registration routine (Fig-

ure 4) now makes its own ClientData structure to

store the object and member function, along with the

original ClientData pointer and a pointer to the Tcl

Interpreter object. It then calls the original Create-

Command, registering the same extern \C" callback

routine (CallCmdProc) for every command registra-

tion.

CallCmdProc (Figure 5) will be called whenever

any command registered with our new CreateCommand

procedure is interpreted. It is the responsibility of the

CallCmdProc to actually call the appropriate member

function of the appropriate object. It does so by using

class Tcl_Interpreter

{

public:

typedef int

(Callback::*CreateCommandCallback)

(ClientData date,

Tcl_Interpreter *interp,

int argc,

char *argv[]);

void

CreateCommand(const char *,

Tcl_CmdProc *,

ClientData,

Tcl_CmdDeleteProc *)

void

CreateCommand(const char *,

Callback *,

CreateCommandCallback *,

ClientData,

Tcl_CmdDeleteProc *)

...

}

Figure 3: CreateCommand Interface

typedef struct {

Tcl_Interpreter *interp;

Callback *object;

CreateCommandCallback *member;

ClientData data;

} CmdProcData;

Tcl_Interpreter::CreateCommand

(const char *cmdName,

Callback *object,

CreateCommandCallback *member,

ClientData data,

Tcl_CmdDeleteProc *deleteProc)

{

CmdProcData* cpdata = new CmdProcData;

cpdata->interp = this;

cpdata->object = object;

cpdata->member = member;

cpdata->clientData = clientData;

CreateCommand(cmdName,

CallCmdProc,

(ClientData) cpdata,

deleteProc);

}

Figure 4: CreateCommand Implementation

[2] Jin-Kun Lin. Virtual Screen: A Framework for Task

Management. In Proceedings of the Sixth Annual X

Technical Conference, January 1992.

[3] John Menges. The X Engine Library: A C++ Li-

brary for Constructing X Pseudo-Servers. In Pro-

ceedings of the Seventh Annual X Technical Confer-

ence, pages 129{141, 103 Morris Street, Sebastopol,

CA 95472, January 1993. O'Reilly & Associates,

Inc.

[4] D. Shackelford, J.B. Smith, and F.D. Smith. A

Distributed Data-Storage Service for Supporting

Group Collaborations. Technical Report TR92-

044, Department of Computer Science, University of

North Carolina, Chapel Hill, North Carolina 27799,

October 1992.

[5] J. B. Smith and F. D. Smith. ABC: A Hypermedia

System for Artifact-Based Collaboration. In Pro-

ceedings of Hypertext '91, December 1991.

5 Non-blocking Tcl IPC

Our X Pseudo Server (XPS) and other components of

the ABC system must not block on any operation, in-

cluding the sending and receiving of Tcl commands.

With the Tk-based send mechanism and similar IPC

capabilities available via socket-based Tcl extensions,

processes on either the sending or the receiving end can

block. We are using Tcl-DP

4

RPC as a basis for our Tcl

IPC, and are re-implementing the receiving end of RPC

and the sending end of RDO to ensure non-blocking

operation. Since the XPS and other components have

their own schedulers, and the XPS doesn't need Tk at

all, we are also modifying RPC and RDO to work with

our scheduler and to eliminate any dependence on Tk.

6 Scheduling

Our current browsers use Interviews and ISIS. Existing

applications may use other toolkits, and in any event,

have their own event loop. As previously mentioned,

our X Pseudo-server has its own scheduler. Often dif-

ferent components of applications want to do their own

event scheduling. We are still studying this problem

and are developing techniques for integrating Tcl and

Tk into such environments.

7 New Tk Widgets

We are considering implementing two new Tk container

widgets. One would be a Virtual Screen widget which

would be able to contain arbitrary top-level X windows

of other applications. This would be used in imple-

menting our Virtual Screen window sharing capabili-

ties. The other would be a Generic Function Manager

(GFM) widget, which would be able to reparent a sin-

gle existing top-level X window, adding a title bar at

the top like a window manager (but under any exist-

ing window manager title bar). Arbitrary Tk widgets

such as buttons and menu buttons could be placed on

the title bar portion of the GFM widget. These would

be used to invoke, e.g., hyperlinking and conferencing

functions.

If and when we implement the above-mentioned

GFM widget, it will take us a long way toward the goal

of having a Tk-based (and therefore highly extensible)

window manager.

8 New Tk Geometry Managers

Our graph browsers, currently written using Interviews,

implement various constraints on the graph structures

they will create. For example, we have Tree browsers,

4

Tcl-DP was developed by Lawrence Rowe, Brian Smith, and

Steve Yen at the University of California at Berkeley

List browsers, and Network browsers. We are consid-

ering re-implementing browsers as Tk geometry man-

agers, so that the constraints and graph layouts can be

implemented in terms of geometry management. Wid-

gets would be placed in terms of their (logical) link

relationships to other widgets, rather than in terms of

physical layout relationships to othe widgets. For ex-

ample, a Tree browser geometry manager would accept

placement speci�cations consisting of parent/child rela-

tionships between the widgets. The geometry manager

would then automatically compute a reasonable physi-

cal layout for the contained widgets.

9 Security

The Tcl interpreters we use cannot be allowed to exe-

cute arbitrary commands received from arbitrary pro-

cesses, because some of the built-in Tcl commands (e.g.,

exec) are unsafe. There are two good approaches to this

problem.

One approach is to authenticate connections using

an authentication server. This way, we know who is

connecting to us and can determine whether or not to

interpret commands from the sending process.

The other approach is to have two Tcl interpreters

in our applications. One is made safe by removing (re-

naming to null) any unsafe commands. The other is

a full-blown Tcl interpreter. Any commands received

from another process are sent to the safe interpreter. If

the services of the full-blown Tcl interpreter are needed

either internally or for the interpretation of a command

received from another process, the full interpreter can

then be called upon from inside the application owning

the interpeter, in a safe manner.

In the near term, we will be using the latter ap-

proach, because it is easier to implement. The former

approach allows for multiple classes of requesters which

are trusted to di�erent degrees, should that be desirable

at some point in the future.

10 Summary

In summary, the ABC System is a large, complex sys-

tem that makes heavy use of Tcl and Tk for its infras-

tructure and user interfaces. ABC requires that Tcl

and Tk be used in novel ways, and we believe the so-

lutions to our requirements will be generally useful in

other environments.

References

[1] K. Je�ay, J.K. Lin, J. Menges, F.D. Smith, and J.B.

Smith. Architecture of the Artifact-Based Collabo-

ration System Matrix. In Proceedings of CSCW '92,

November 1992.

several other XPSs associated with the other confer-

ence participants. Tracking is accomplished by record-

ing summaries of each message that passes through the

protocol server along with time-stamp information.

All of these components function together to provide

an environment in which groups can work on shared

artifacts. Below we discuss some of the ways that we use

Tcl and Tk in the implementation of these components.

4 Using Tcl and Tk with C++

Tcl and Tk were designed to be used with the C pro-

gramming language, but the ABC system is being writ-

ten in C++. Fortunately, C++ is able to call C code

and vice versa, so it is possible to use Tcl/Tk with

C++. However, using Tcl/Tk e�ectively and naturally

in a C++ environment poses certain problems. In this

section we discuss the problems we have encountered

and the solutions we have developed to date.

4.1 A Tcl/Tk Interpreter Class

It is possible to call Tcl/Tk C library routines directly

from C++ code. It is preferable, however, to encap-

sulate the Tcl/Tk C library calls in one or more C++

classes. For example, one might have a Tcl/Tk inter-

preter class whose constructor creates a Tcl interpreter

and whose member functions map directly to Tcl/Tk

C library calls. Extended Tcl does this type of encap-

sulation for Tcl (but not Tk) via the tcl++.h include

�le.

The primary advantage of this approach is that

it enables C++ code to make Tcl/Tk library calls

in a style that �ts the object-oriented nature of the

C++ language. For example, to create an interpreter,

one would create an instance of the interpreter class,

and the constructor for the class will automatically

call the Tcl CreateInterp library routine to create

a Tcl interpreter. The constructor can also do any

initialization of the Tcl interpreter, e.g., by adding

procs or command bindings to C routines that im-

plement commands. Tcl/Tk library routines such as

Tcl CreateCommand which take a Tcl interpreter

as their �rst argument can then be implemented as

member functions in the interpreter class, their signa-

tures being the same as the corresponding Tcl library

routines, sans the interpreter argument. C++ features

such as default arguments and function overloading can

now be applied to the Tcl interface, just as they can be

applied to the other classes in the application. Fur-

thermore, we can add our own member functions to

the interpreter class (ones that don't map directly to

Tcl/Tk library routines) to enhance the capabilities of

our Tcl interpreter.

4.2 Callbacks to C++ Code

Tcl and Tk have mechanisms for calling C procedures

from the Tcl interpreter. These C procedures are called

callbacks. For example, Tcl commands can be imple-

mented in C, and the C callback routines implementing

these commands can be registered with the Tcl inter-

preter using the Tcl CreateCommand routine. Reg-

istering a command with the interpreter associates the

callback routine with a command name. When the

command is interpreted, the corresponding C callback

routine is called.

In C++ code, we can use the \extern C" declaration

to de�ne C++ routines with C calling conventions that

can be used as callback routines called by the Tcl inter-

preter. For the C++ programmer, however, it is often

desirable to have the interpreter call particular member

functions of particular objects.

We have developed a strategy for implementing Tcl

callbacks to member functions of particular objects.

Since it is di�cult to describe our strategy and its jus-

ti�cation in a small space, we have included a detailed

description as an appendix to this paper.

4.3 Shadow Variables

It is often necessary to have C++ variables (usually

members of objects) \shadow" Tcl variable values, and

vice versa. Building on our technique for implement-

ing callbacks, we are implementing C++ classes whose

objects act like regular C++ data types (either built-

in or user-de�ned types), but which keep their values

consistent with corresponding Tcl (string) variables.

For example, one might declare an shadow integer as

follows:

Tcl_int speed(interp, ``speed'');

The Tcl int class implements an operator int() con-

version operator and assignment operators, enabling

speed to be used in any way that a normal int variable

can be used. The assignment operators, however, call

SetVar to update the Tcl \speed" variable, and the

Tcl int class has a member function which has is reg-

istered (in the constructor) to receive noti�cation when

the Tcl \speed" variable changes. The Tcl int object

then updates its value accordingly.

More complex user-de�ned data types can also be

shadowed. For example, we will implement a bitvector

type in C++ which shadows a Tcl type (perhaps an ar-

ray) which is manipulated by a Tk checkbox list. This

makes it possible for the C++ bitvector to automati-

cally reect the current on and o� values of the various

checkboxes in the list.

root

A B C

a document
of some sort

Figure 2: A Sample Graph

of the ABC system or its organization of the artifacts.

Nodes may also be joined by hyperlinks, either with

endpoints which are simply nodes or endpoints which

are anchors within the content of nodes. These anchors

can be words, sentences, or parts of �gures or graphs.

Sharing of these artifacts can take two forms. First,

artifacts may be shared asynchronously by accessing

shared artifacts through the distributed graph server

(DGS)[4]. Artifacts may also be shared synchronously

by sharing windows which display the artifacts. In this

case two users see the same windows encapsulated in

a nested Virtual Screen[2] in a WYSIWIS (what-you-

see-is-what-I-see) fashion. Input to the windows is ar-

bitrated by passing a token to the next user who wishes

to provide input.

In addition to these functions available to the nor-

mal user we also incorporate facilities for monitoring

and replaying sessions. These facilities are used by re-

searchers to study the way that groups use the system.

These functions include simple recording and replay of

all of the windows in the user's ABC environment as

well as recording semantic actions in various applica-

tions.

Finally, the system provides an interface to the ABC

functions which can be used both with ABC built ap-

plications and standard X applications.

3 Design of the ABC System

The ABC system has �ve principle components. They

are the distributed graph server (DGS), browsers, the

generic function manager, the X Pseudo-Server, and the

matrix hub. Additionally, the system is designed to al-

low standard X applications to be used either without

modi�cation or with minimal modi�cation to add fea-

tures such as anchored hyperlinks. Each of these items

is discussed below.

All of the artifacts used in the ABC system are stored

in a distributed graph server (DGS) built as part of the

ABC system. The DGS represents all artifacts as ob-

jects (nodes, subgraphs, or node content) in a large

graph. Browsers are used to manipulate and traverse

this graph structure, providing specialized tools for ma-

nipulating lists, trees, and networks.

The generic function manager (GFM) acts as an in-

terface to the ABC system. Since many of the functions

of the ABC system operate on a particular window (or

on a node represented by a window) this interface ex-

ists for each window in the ABC system. To provide

this interface we add a bar between top-level X win-

dows and the window-manager title bar as shown on

the ABC, Tree Browser, and xterm windows in Fig-

ure 1. Added functions are invoked via this function

bar, which is managed by the GFM, like a window man-

ager manages the title bars it creates. The GFM pro-

vides the user interface, but another process, the matrix

hub, keeps track of what's going on in the system. By

recording which window is open on which node the ma-

trix hub, working in conjunction with the GFM, is able

to associate requests such as 'create hyperlink' with the

artifacts that are being examined in the respective win-

dows. In turn, the matrix hub communicates this link

to the graph-server. The GFM bar is also used to invoke

conferencing operations, such as 'move this window into

a conference', and other system operations.

In addition to the browsers built for the ABC system,

we use standard applications to manipulate node con-

tent. Without any modi�cations these applications can

be used to edit and manipulate node content, includ-

ing creating and following un-anchored hyperlinks (by

means of the GFM bar). Creating or following anchored

hyperlinks does require some minimal modi�cations to

the application. A modi�ed application must provide

a mechanism for identifying an item or region desig-

nated as an anchor and passing that information to a

library function. This function will send a message to

the GFM informing it of the selected region so that the

matrix hub may record the link. Applications may also

be modi�ed similarly to record what semantic actions

were invoked.

Finally, we have the component which manipulates

the X protocol stream. Windows are grouped, con-

ferenced, and tracked by using an X Pseudo-Server

(XPS) which can intercept, translate, and distribute

X-protocol streams[3]. The XPS can modify the X-

protocol streams for a set of windows so that they all

appear to have the same (virtual) root window, thus

grouping them inside a common Virtual Screen. It can

also conference windows by distributing and translat-

ing the X-protocol stream for a particular window to

Tcl and Tk Use

in the

Artifact Based Collaboration System

John Menges

Mark Parris

1

May 24, 1993

Abstract

At the University of North Carolina Department of

Computer Science we are developing the Artifact Based

Collaboration System (ABC) which provides com-

puter support for collaboration. ABC consists of a

distributed hypermedia graph server with associated

graph browsers. It also includes the ABC Matrix which

interconnects the graph server and browsers with ex-

isting X-based applications. ABC also provides hy-

perlinking and window sharing capabilities. Tcl is

used for de�ning process-level interfaces and for inter-

application communication. Tk is used to implement

various user interfaces. In this paper we discuss cur-

rent and expected uses for Tcl and Tk in the ABC

system, and some of the problems we have encountered

regarding the use of Tcl and Tk in our environment.

1 Introduction

At the UNC Department of Computer Science we are

developing a system to provide computer support for

collaboration. The system is called the ABC (Artifact

Based Collaboration) System[5][1] and runs on UNIX

2

under the X Window System

3

. ABC supports manipu-

lation and sharing of the artifacts which are the prod-

ucts of group collaboration. It also provides for record-

ing and studying the way the system is used. The ar-

tifacts include, but are not limited to, documents, dia-

grams, and code as well as graphs which represent re-

lationships among these items. These artifacts are the

objects of collaboration among groups of people who

may or may not be co-located in either time or space.

Below, we �rst describe the functionality and some

of the appearance of the system. Then we discuss a

high-level view of the design of the system. Finally, we

1

John Menges (menges@cs.unc.edu) and Mark Parris (par-

ris@cs.unc.edu) are graduate students in Computer Science at

the University of North Carolina.

2

UNIX is a registered trademark of AT&T.

3

The X Window System is a trademark of the Massachusetts

Institute of Technology.

Hyperlink

graph
Tuesday 1/12/93TWM Icon Manager

Desktop

xterm

graph

emacs

ABC

Desktop

xterm

Tree Browser

TWM Icon Manager

HyperlinkConference Tracking

% ls

xterm

HyperlinkConference Tracking

HyperlinkConference Tracking

Tree Browser

Figure 1: An ABC Virtual Screen

discuss our use of Tcl and Tk in the implementation of

ABC.

2 Appearance of the ABC Sys-

tem

The ABC system is not a single application, but an en-

vironment in which applications may run. The bound-

ary between this environment and the normal UNIX

environment is represented on the the user's display as

a virtual root window. This window exists as a dif-

ferent logical display to which X-clients running in the

ABC system may connect. This window also has its

own window manager (Figure 1).

In the ABC system, artifacts are represented as nodes

and node content in graphs. Figure 2 shows a sample

graph with four nodes. The leaf nodes (nodes A, B,

and C) each have content. The content of each node

is shown in the rectangles attached by dashed lines.

The graph artifacts can be manipulated by hyperme-

dia browsers that are part of the ABC system itself,

while the other types of content can be manipulated

by arbitrary X-based applications that are not aware

1

