
1. Introduction
The Tcl Distributed Programming (Tcl-DP)

extension to Tcl/Tk [1][2] introduces a suite of com-
mands for creating client-server systems. In this
abstract, we provide examples of using Tcl-DP. We
also describe the remote procedure call (RPC)
abstractions and distributed object system of Tcl-DP.

2. A Client-Server Example
An id server can be built using Tcl-DP. The

Tcl code shown in Figure 1a initializes the id server.
The MakeRPCServer call of Figure 1a creates a
socket on port 4545 that will accept client connec-
tions. A socket is an endpoint of network communi-
cation in UNIX [5]. The Tcl code for client processes
is shown in Figure 1b. TheMakeRPCClient call
of Figure 1b connects to the id server and returns a
handle to represent a socket. In line 2 of Figure 1b,
theRPC call retrieves an unique id from the id server,
by remotely invoking theGetId procedure defined
in line 3 of Figure 1a.

3. Distributed Objects
Tcl-DP features a distributed object system,

where an object is a collection of fields. With this
system, objects may be distributed to other connected
processes. Processes are connected with theMakeR-
PCServer and MakeRPCClient commands. A
change to a field in a distributed object in one pro-
cess is automatically propagated to other processes.
Tcl-DP also providestriggers. A trigger is a Tcl
expression that is evaluated when a field in a distrib-
uted object changes.

4. Implementation
The Tk send command uses the X ICCCM

protocol [3]. Processes connected bysend use the X
Server to pass messages. Since Tcl-DP uses TCP/IP,
communicating processes in Tcl-DP do not need to
share an X Server connection. This has advantages.
First non-X clients need not connect to an X server to
exchange messages. Second, the round-trip message
time will be less in Tcl-DP since messages do not
pass through the X Server.

Tcl-DP provides three types of commands:
distributed object commands, RPC commands, and
socket manipulation commands. The distributed
object system is implemented entirely in Tcl, using
the RPC commands of Tcl-DP. The RPC commands
were originally implemented entirely in Tcl, using
the lower level socket manipulation commands, but
have been partially reimplemented in C for speed.
The round-trip time for anRPC, measuring onlyRPC
related code for machines on the same Ethernet sub-
net, is around 4 milliseconds. The Tksend com-
mand takes around 19 milliseconds for the same test.
The Tcl-DP extension consists of3,500 lines of C
code and 500 lines of Tcl code.

5. Deadlock and Blocking
Any RPC system should be robust in the event

of connection failure. In Tcl-DP, programmers can
specify an optional millisecond time-out value for
RPC’s. RPC’s also usually block while waiting for a
remote return value and can thus prevent other
events, such as X events and incomingRPC’s, from
getting processed. This situation can easily lead to
deadlock. In Tcl-DP, programmers can specify the
types of events (Tk, file, timer, RPC, all or none) that
should be handled while the system is waiting for
RPC return values.Tcl-DP also supplies theRDO

Tcl Distributed Programming†

Brian C. Smith, Lawrence A. Rowe, Stephen C. Yen

Computer Science Division

University of California

Berkeley, California 94720

bsmith@cs.Berkeley.EDU, larry@cs.Berkeley.EDU, syen@postgres.cs.Berkeley.EDU

†This research was supported by the National Science Founda-
tion under Infrastructure Grant No. CDA-8722788. Additional
support was pro vided by Fujitsu America and Hewlett-Packard.

command, which unlike theRPC command, does not
wait for the return value of a remote evaluation but
returns immediately. AnRDO takes around 500
microseconds to complete.

6. Conclusion
The features of Tcl-DP, including its flexible

RPC mechanism, distributed object system, and its
integration with Tcl/Tk, has allowed us to quickly
implement several client-server applications with the
same speed and ease as when one creates applica-
tions with Tcl/Tk. Among these have been a network
name server and a distributed continuous media sys-
tem [4].

References
[1] Ousterhout, J. “Tcl: An Embeddable Command

Language.”Proc. USENIX Winter Conference,
January 1990.

[2] Ousterhout, J. “An X11 Toolkit Based on the
Tcl Language.”Proc. USENIX Winter Confer-
ence, January 1991.

[3] Scheifler, R., and Gettys, J., with Flowers, J.,
Newman, R., and Rosenthal, D.X Window Sys-
tem: The Complete Guide to Xlib, X Protocol,
ICCCM, XLFD (Second Edition). Digital
Press, 1990.

[4] Rowe, L., and Smith, B. “A Continuous Media
Player.”Third International Workshop on Net-
work and Operation System Support for Digital
Audio and Video. 1992, pp. 334-344.

[5] Kochun, S., and Wood, P.UNIX Networking.
Hayden Book, 1989.

On zonker.cs.Berkeley.EDU:
MakeRPCServer 4545
set lastId 0
proc GetId {} {

global lastId;
incr lastId;
return $lastId

}

On linus.cs.Berkeley.EDU:
set server [MakeRPCClient zonker 4545]
set id [RPC $server GetId]

(a) (b)

Figure 1: An ID Server and Client

