
CASTE: A class system for Tcl �

Michael S. Braverman

571 Evans Hall
University of California

Berkeley, CA 94720
braver@cs.berkeley.edu

Abstract

This paper introduces CASTE (Classes, A Sensible Tcl
Extension), a class system for Tcl that, in its simplest
form, enables the creation and manipulation of struc-
tured objects, but more generally provides an entire
object-oriented class mechanism with the inheritance
of slots and methods. Methods may be defined either
in Tcl or C. CASTE is largely modeled after the behav-
ior of “standard-class” classes and “standard-object”
objects in CLOS, the Common Lisp Object System
[1]. However, unlike CLOS, in which methods are in-
voked via the application of generic functions, meth-
ods in CASTE are invoked using a message passing
paradigm that is more consistent with the syntax and
semantics already used by Tcl/Tk for interactions with
its built-in classes. CASTE supports the development
of class libraries, with class definitions “auto-loaded”
on an as-needed basis. The system is both efficient
and flexible, and experience with it has demonstrated
its ability to promote software re-use in Tcl.

1 Introduction

Tcl currently provides limited facilities for managing
structured data objects. While arrays and lists can be
used to group heterogeneous data, using them to sim-
ulate structured objects typically requires the manipu-
lation of global variables throughout a program, mak-
ing such programs unnecessarily complex and error-
prone. This paper introduces CASTE (Classes, A Sen-
sible Tcl Extension), a class system for Tcl that, in
its simplest form, enables the creation and manipula-
tion of structured objects, but more generally provides

�This material is based in part upon work supported by the Na-
tional Science Foundation under Infrastructure Grant No. CDA-
8722788.

an entire object-oriented class mechanism with the in-
heritance of slots and methods, including before, after,
and around daemon methods. The inheritance mech-
anism greatly enhances the possibilities for software
re-use in Tcl. In particular, it facilitates the develop-
ment of families of user interfaces that share common
properties; a programmer need only write methods
specific to the application at hand without having to
construct the entire interface from scratch.

CASTE is largely modeled after the behavior of
“standard-class” classes and “standard-object” ob-
jects in CLOS, the Common Lisp Object System [1].
CASTE follows CLOS’s “standard” policies for resolv-
ing multiple inheritance in the class hierarchy, for
determining the default initialization of slot values,
and for ordering method invocations when more than
one method may apply to a given object. However,
unlike CLOS, in which methods are invoked via the
application of generic functions, methods in CASTE

are invoked using a message passing paradigm that is
more consistent with the syntax and semantics already
used by Tcl/Tk for interactions with its built-in classes
(canvases, menus, etc: : :).

CASTE is implemented in C and has been used to
build several projects. One of these projects, a sim-
ple proof-tree browser and editor, demonstrates the
utility of inheritance. For example, proof-tree nodes
can be drawn as rectangles, circles, or ovals. When
a node is selected, control points are displayed on
the corners of its bounding box. Rather than writing
separate code for all three shapes of objects, an ab-
stract class corresponding to objects with rectangular
bounding boxes was created and methods for the dis-
play and manipulation of control points for that class
were defined. A specific class, inheriting from the
abstract class, was defined for each node shape. Each
of these shape-specific classes has methods tailored

> defclass node f
x
y
sheet

g

node

> node
node1
> node1 set y 4
4
> node1 set y
4
> node1 y
4

> node? node1
1
> node1 destroy
> node1
invalid command : : :

> node? node1
0

> defmethod fnode mult yg ffactorg f
puts "Hi, I’m $self."
return [expr $factor*[$self y]]

g

> node1 mult y 10
Hi, I’m node1. printed
40 value returned

(a) (b) (c) (d)
Figure 1: Class and Method Definition

to its type of outline, but the common operations on
control points are handled automatically via inheri-
tance. Three other significant applications have also
been developed using CASTE: a 2D structured draw-
ing program, an interactive 3D modeling program,
and a hypertext system[2]. All three of these appli-
cations share a common interface that was defined at
an abstract level using the class system. Application-
specific characteristics of each interface were specified
by simply writing application-specific methods.

2 System Overview

There is insufficient space in a paper of this length
to describe, comprehensively, all of CASTE’s features.
Instead we will illustrate, in terms of three examples,
the system’s principal characteristics. In the figures
that follow, expressions that a user might send to a Tcl
interpreter are prefixed with a > and appear in a bold
font; values that are returned or are printed appear in
a sans-serif font. It is assumed that the reader has a
basic understanding of object-oriented programming
and, of course, programming in Tcl.

2.1 Class and method definition

CASTE may be used merely to define and manipulate
structured objects. Figure 1a illustrates the use of
defclass to define a class named node whose objects
are to contain three slots named x, y, and sheet. In
addition to defining the slots of the class, defclass
also creates a Tcl command named node that may be
invoked to create an instance of the node class and a
command named node? that will test if an object is
an instance, or sub-instance, of that class. The value
returned from the node command will be a string of
the form node<N> (<N> some integer), which will
serve as a handle for the object.

By default, the node class will have a number of
methods defined for slot access. The simplest of these
is set. Like the Tcl set command, if no value is sup-
plied, then the current value of the indicated slot is
returned. As a convenience, slot reading methods,
with the same names as the corresponding slots, are
automatically defined. The creation of a node ob-
ject and the use of these methods are illustrated in
Figure 1b.

Normally an object will exist for the lifetime of
the Tcl interpreter in which it was created. However,
if an object is no longer needed, its storage may be
reclaimed by “sending” it the destroy method, as in
Figure 1c.

Custom methods for a class are defined with the
defmethod command. Figure 1d demonstrates the
definition and use of a method named mult y on the
node class; this method takes a single argument named
factor. When a method is invoked, the local variable
self is automatically bound to the handle of the object
to which the method was passed.

2.2 Inheritance, initialization, and daemons

Figure 2a shows how a more specific class named
s node, with two additional slots named shape and
contents, could be defined to inherit from the node
class. This class definition differs from that in Fig-
ure 1a in three important ways. First, rather than hav-
ing a class name appear after the defclass command,
a list of class names appears. The first of these is the
name of the class that is being defined and the sub-
sequent names, called the direct super-classes (there
is only one in this example), are those classes from
which the class being defined should directly inherit.
The defined class will indirectly inherit from all those
classes from which the direct super-classes inherit.
The order of the class names is used to compute the
global inheritance order of the class hierarchy. Gen-

> defclass fs node nodeg f
fshape init "abstract"g
contents
g –slot args

s node

> s node –shape round
s node1
> s node1 shape
round
> s node
s node2
> s node2 shape
abstract
> s node2 set y 3
3
> s node2 y
3

> defmethod fs node mult y beforeg ffactorg f
$self export y
puts "Running Before"
incr y 5

g

> defmethod fnode mult y afterg ffactorg f
puts "Running After"

g

> s node2 mult y 10
Running Before printed
Hi, I’m s node2. printed
Running After printed
80 value returned

(a) (b) (c)
Figure 2: Simple Inheritance, Initialization, and Method Daemons

erally speaking, classes are listed in left to right order
from most specific to least specific. Thus, methods
and slots of s node will shadow those of node and
any classes from which node might inherit.

The second and third significant differences in the
defclass statement are related: the presence of the
–slot args option at the end of the statement and the
manner in which the shape slot is defined. Rather
than just having its name appear, there is a list speci-
fying the optional init attribute of the shape slot. The
init option specifies a default expression that may be
evaluated (in the global environment) at object cre-
ation time to initialize the slot. The –slot args option
arranges for the node object creation command to al-
low initialization arguments for the slots specified in
the defclass statement. These arguments will have the
same name as the corresponding slot, except with a “–”
prepended to the slot name. Thus, the arguments will
look like the switches that are used to initialize Tcl/Tk
widgets. If an initialization argument is used when
creating an object, its value will take precedence over
that specified by any init option for the same slot;
in this case, the init option’s expression will not be
evaluated since it may potentially have side-effects.

Figure 1b should clarify this discussion. First
s node1 is created using the –shape argument with
the value round; hence, its shape slot has the value
round. Next, s node2 is created without the –shape
argument, and so the init option is used to initialize
the slot, giving it the value abstract. Note that the
x, y, sheet, and contents slots are unbound for both
s nodes because no initializations were specified for
them. These slots can be set and read in the usual man-
ner, as shown in the figure, after the object is created.
Mechanisms exist in CASTE for the inheritance of slot

initializations, for creating initialization arguments for
only a subset of a class’s slots, and for generating ini-
tialization arguments that are named differently than
the slots themselves, but space does not permit their
description here. CASTE also allows the definition of
initialization arguments that may be used to do more
than just set an object’s slots. This feature will be
discussed in section 2.3.

Figure 2c illustrates the definition of before and
after daemon methods. A method defined in the
usual manner, as in Figure 1d, is called a primary
method. When an object is passed the name of a
method, the most specific primary method with that
name is invoked.1 However, when the primary method
is invoked all the associated before and after methods
are run before and after the primary method, respec-
tively, in an order determined by the inheritance hier-
archy. Whether or not before or after methods exist,
the value returned for a particular method invocation
is that which is returned from the primary method.
Thus, in Figure 2c, a before method is defined for
the mult y method (earlier defined in Figure 1d) on
the s node class. An after method is also defined
for mult y, but it is specified on the superclass node.
Thus, node objects will “see” only the after method,
whereas both the before and after methods will be run
for s node objects. A third type of daemon method,
the around method (not demonstrated here), can be
defined to modify the value returned by the primary
method or to selectively keep the primary method and

1The primary method, if it wants, may use a command named
call next method to invoke the method that it is immediately
shadowing in the class/method hierarchy. The predicate com-
mand exists next method? may be used to determine if there is a
shadowed method to call.

> defclass nodeset f
fnodes init fgg
g –slot argsn
finit args –xpos –yposgn
farg defaults –xpos 50 –ypos 70g

nodeset

> defmethod fnodeset initialize afterg finitsg f
parse inits into f–xpos xp –ypos ypg $inits
foreach node [$self nodes] f

$node set x $xp y $yp
g

g

> defmethod fnodeset destroy beforeg fg f
foreach node [$self nodes] f$node destroyg

g

> nodeset –nodes fs node1 s node2g –xpos 100
nodeset1
> s node1 x
100
> s node1 y
70
> nodeset1 destroy
> nodeset1
invalid command name "nodeset1"
> s node1
invalid command name "s node1"
> s node2
invalid command name "s node2"

(a) (b)
Figure 3: Customizing Initialization and Destruction

its associated before and after methods from being
invoked.

The definition of the mult y before method also
demonstrates the use of the export method. This
method allows a procedure to map between an object’s
slots and local variables in the current scope. This
mapping ability allows a program to have extended
direct access to a slot without the overhead associated
with the repeated invocation of slot accessor methods.
Hence, given that the y slot of s node2 was set to 3
(in Figure 2b), when the mult y method is invoked
with the argument 10, the before method is first run,
incrementing the y slot of s node2 to 8, and, thus, the
value returned from the primary method, following
the execution of the after method, is 80.

2.3 Custom initialization and destruction

When a CASTE object is created, its slots are first
allocated and then the object is initialized using a
pre-defined method named initialize. Normally, as
described earlier, this method initializes slots accord-
ing to the initialization arguments passed to the object
creation command and, in their absence, uses the init
option in the individual slot definitions to determine
the initial values of the slots. Later, if a destroy mes-
sage is sent to an object, the object and its slots are
simply deallocated. Sometimes, however, this default
behavior is insufficient. For instance, it is often useful
to pass initialization arguments that do not simply set
the value of a slot of the object being created. Sim-
ilarly, certain cleanup operations may have to be run

before an object is destroyed. The default behavior of
object initialization and destruction may be modified
through the definition of daemon methods.

Consider the nodeset class defined in Figure 3a.
Objects of this class will contain a single slot, nodes,
whose initial value defaults to the empty list. The
class definition uses the –slot args option to define
an initialization argument for the slot, but it also de-
clares two additional initialization arguments, –xpos
and –ypos, using the defclass option named init args.
Further, the class definition uses another defclass op-
tion, arg defaults, to specify default expressions to
associate with –xpos and –ypos should these argu-
ments not be passed at object creation time.

Following the class definition, an after method for
initialize is defined on the nodeset class. When the
nodeset object creation command is invoked, the sin-
gle inits argument will be bound to the list of ini-
tialization arguments (if any) that are passed. The
parse inits into command parses out the requested
initialization arguments and binds local variables to
their associated values. If a requested argument is not
passed, then parse inits into will consult the default
values defined by arg defaults in the class definition.

Figure 3b illustrates the modified initialization be-
havior for nodeset objects. First, the object cre-
ation command is called with the two initialization
arguments –nodes and –xpos, creating the object
nodeset1. Since the initialization method in Figure 3a
is an after method, the default initialization method
will be run before it is executed, and so the nodes
slot of nodeset1 will already be initialized in the usual

manner before it starts. The after method then loops
through the nodes in nodes setting their x and y slots
according to the values associated with –xpos and
–ypos. Since –ypos was not passed to the object cre-
ation command, its value is taken from that specified in
the arg defaults option. Hence, we find, in Figure 3b,
that the x and y slots of s node1 (and s node2, for that
matter) have the values 100 and 70, respectively, after
nodeset1 is initialized.

Figure 3b also demonstrates the effect of the
nodeset destroy before daemon method. After
nodeset1 is destroyed, we find that s node1 and
s node2 were also destroyed per the instructions in
the before daemon method.

3 Efficiency and Flexibility

CASTE was designed not only to simplify program-
ming in Tcl, but also to be efficient. At the time that
a class or a new method for a class is defined, the in-
heritance hierarchy for the class and the concomitant
ordering of its methods, along with that of their be-
fore, after, and around daemons, are cached. Hence,
the time needed for object creation and method invo-
cation is independent of the size and complexity of the
class hierarchy. Measurements on the current CASTE

implementation indicate that slot access via methods
takes roughly one and a half to twice the time of a di-
rect set command on a regular Tcl variable. However,
this overhead can be eliminated using methods such as
export (described in section 2.2). Greater efficiency
may also be achieved by defining methods directly in
C. CASTE provides a C function, defCmethod, that
allows the programmer to register a standard Tcl/C
call-back function as a method for use in a particular
interpreter.

CASTE is very flexible, allowing methods and
classes to be defined in any order. The only require-
ment is that all the super-classes of a class be defined
before attempting to create an object of that class. All
classes implicitly inherit from a “top” class named
T. Default methods for all classes are specified in
CASTE by defining methods on the T class. As a re-
sult, the user may replace, or modify the behavior (via
method daemons) of any or all the default methods
supplied, as with the example in section 2.3. Er-
ror events (e.g., writing to undefined slots or reading
from unbound slots) are also handled within the class
system via methods; hence, class specific handling
of errors is possible by merely writing custom error

handler methods to shadow the system defaults. A
complete list of the default methods, grouped roughly
according to function, is provided in Table 1.

4 Tcl/Tk Compatibility

As with procedure definitions in Tcl, classes and meth-
ods may be defined and later redefined in the same
interpreter. Classes dependent on those redefined are
automatically updated by the system.

A Tcl program may use the slot ref method to gain
direct access to an object’s slot via a global vari-
able. This feature allows Tcl to trace operations on
slots. By extension, it also allows Tk widgets, such as
checkbuttons, to effectively use a slot as a referent in
a –variable option.

For complete compatibility, CASTE will allow the
programmer to provide a desired handle name when
creating an object. As a result, object creation can be
made to look exactly like that for Tk widgets. More-
over, the cinfo method can provide the default initial-
ization for any given slot of an object. Together, the
cinfo and set methods can be used to define a config
method, providing access to slots with a syntax com-
pletely consistent with that used with Tk widgets.

CASTE is implemented so as to require no modifi-
cations to the standard Tcl distribution code. A Tcl
interpreter may be extended to use CASTE by simply
calling, from C, the single function Init Caste and
passing a pointer the interpreter’s Tcl Interp struc-
ture. A slight change to Tcl’s auto mkindex proce-
dure allows CASTE to provide class libraries that are
“auto-loaded” on an as-needed basis.

5 Conclusion and Future Directions

This paper has presented an overview of CASTE, a
comprehensive class system for Tcl. The system is
both powerful and efficient and its syntax and se-
mantics integrate well with those already existing in
Tcl/Tk.

Future versions of CASTE will allow “class slots”,
wherein all instances of a given class will be able
to share one or more of their slots. This will allow
CASTE to subsume much of the functionality needed
by those who desire to have a “module” mechanism,
with shared private variables, in Tcl.

CASTE currently allows classes to be redefined, but
it does not update any existing objects that are in-

Method and Arguments Brief Description

initialize inits Initialize object according to inits list.
destroy Destroy object.

set [slot value]* slot [value] Set the slots to the corresponding values, returning
the last value or value of the last slot given.

append slot value [value]* Perform Tcl append operation on slot with values.
lappend slot value [value]* Perform Tcl lappend operation on slot with values.
unset slot [slot]* Unset the indicated slots.
slot bound? slot Return 1 or 0 depending if the slot is currently set.

export slot [slot]* map slots of object to local variables of the same
name

export to slot var [slot var]* map slots of object to the corresponding indicated
local variables

slot ref slot Return global variable that refers to slot.

print Print the values of all the object’s slots.
cinfo request [arg]* Return information concerning object’s class.

no applicable method umethod arglist Produce Tcl error: undefined method umethod
was applied with the indicated argument list.

no next method method arglist Produce Tcl error: call next method was called
and no method exists higher in the class hierarchy.

slot unbound slot Produce Tcl error: attempted to read unbound slot.
slot missing slot op [arg] Produce Tcl error: attempted to perform operation

[with the indicated arg] on an undefined slot.

Table 1: Default Methods

stances of the redefined class; only a warning is printed
if an outdated object is used. In the future, objects will
be automatically updated to the new class definition.

Finally, a default trace method, that is aware of
CASTE’s inner workings, needs to be defined so that
methods, rather than procedures, may be called when
accessing the slots of an object.

Acknowledgements

I would like to thank Narciso Jaramillo for using
CASTE to build a number of interesting applications.
His use of CASTE aided in the debugging process and
helped to point out deficiencies in the original design.
I would further like to thank him and Brian Smith
for useful suggestions concerning features that CASTE

should include.

References

[1] Steele, Guy L., Jr., Common Lisp: The Language.
2nd ed. Digital Press (1990), 770–864.

[2] Jaramillo, Narciso, personal communication.

